aje6 commited on
Commit
6368661
·
verified ·
1 Parent(s): 9303397

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -53
app.py CHANGED
@@ -1,60 +1,133 @@
1
- import gradio as gr
2
- import cv2
3
- import numpy as np
4
- import onnxruntime as ort
5
 
6
- # Load the ONNX model using onnxruntime
7
- onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path
8
- session = ort.InferenceSession(onnx_model_path)
9
 
10
- # Function to perform object detection with the ONNX model
11
- def detect_objects(frame, confidence_threshold=0.5):
12
- # Convert the frame from BGR (OpenCV) to RGB
13
- image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
14
 
15
- # Preprocessing: Resize and normalize the image
16
- # Assuming YOLO model input is 640x640, update according to your model's input size
17
- input_size = (640, 640)
18
- image_resized = cv2.resize(image, input_size)
19
- image_normalized = image_resized / 255.0 # Normalize to [0, 1]
20
- image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format
21
- image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension
22
-
23
- # Perform inference
24
- inputs = {session.get_inputs()[0].name: image_input}
25
- outputs = session.run(None, inputs)
26
 
27
- # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
28
- # boxes, confidences, class_probs = outputs
29
-
30
- # # Post-processing: Filter boxes by confidence threshold
31
- # detections = []
32
- # for i, confidence in enumerate(confidences[0]):
33
- # if confidence >= confidence_threshold:
34
- # x1, y1, x2, y2 = boxes[0][i]
35
- # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
36
- # detections.append((x1, y1, x2, y2, confidence, class_id))
37
 
38
- # # Draw bounding boxes and labels on the image
39
- # for (x1, y1, x2, y2, confidence, class_id) in detections:
40
- # color = (0, 255, 0) # Green color for bounding boxes
41
- # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
42
- # label = f"Class {class_id}: {confidence:.2f}"
43
- # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
44
 
45
- # # Convert the image back to BGR for displaying in Gradio
46
- # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
47
 
48
- return outputs
49
-
50
- # Gradio interface to use the webcam for real-time object detection
51
- # Added a slider for the confidence threshold
52
- iface = gr.Interface(fn=detect_objects,
53
- #inputs=[
54
- # gr.Video(sources="webcam", type="numpy"), # Webcam input
55
- inputs = gr.Image(sources=["webcam"], type="numpy"),
56
- # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
57
- # ],
58
- outputs="image") # Show output image with bounding boxes
59
-
60
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # import cv2
3
+ # import numpy as np
4
+ # import onnxruntime as ort
5
 
6
+ # # Load the ONNX model using onnxruntime
7
+ # onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path
8
+ # session = ort.InferenceSession(onnx_model_path)
9
 
10
+ # # Function to perform object detection with the ONNX model
11
+ # def detect_objects(frame, confidence_threshold=0.5):
12
+ # # Convert the frame from BGR (OpenCV) to RGB
13
+ # image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
14
 
15
+ # # Preprocessing: Resize and normalize the image
16
+ # # Assuming YOLO model input is 640x640, update according to your model's input size
17
+ # input_size = (640, 640)
18
+ # image_resized = cv2.resize(image, input_size)
19
+ # image_normalized = image_resized / 255.0 # Normalize to [0, 1]
20
+ # image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format
21
+ # image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension
22
+
23
+ # # Perform inference
24
+ # inputs = {session.get_inputs()[0].name: image_input}
25
+ # outputs = session.run(None, inputs)
26
 
27
+ # # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
28
+ # # boxes, confidences, class_probs = outputs
29
+
30
+ # # # Post-processing: Filter boxes by confidence threshold
31
+ # # detections = []
32
+ # # for i, confidence in enumerate(confidences[0]):
33
+ # # if confidence >= confidence_threshold:
34
+ # # x1, y1, x2, y2 = boxes[0][i]
35
+ # # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
36
+ # # detections.append((x1, y1, x2, y2, confidence, class_id))
37
 
38
+ # # # Draw bounding boxes and labels on the image
39
+ # # for (x1, y1, x2, y2, confidence, class_id) in detections:
40
+ # # color = (0, 255, 0) # Green color for bounding boxes
41
+ # # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
42
+ # # label = f"Class {class_id}: {confidence:.2f}"
43
+ # # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
44
 
45
+ # # # Convert the image back to BGR for displaying in Gradio
46
+ # # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
47
 
48
+ # return outputs
49
+
50
+ # # Gradio interface to use the webcam for real-time object detection
51
+ # # Added a slider for the confidence threshold
52
+ # iface = gr.Interface(fn=detect_objects,
53
+ # #inputs=[
54
+ # # gr.Video(sources="webcam", type="numpy"), # Webcam input
55
+ # inputs = gr.Image(sources=["webcam"], type="numpy"),
56
+ # # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
57
+ # # ],
58
+ # outputs="image") # Show output image with bounding boxes
59
+
60
+ # iface.launch()
61
+
62
+ import gradio as gr
63
+ import cv2
64
+ from huggingface_hub import hf_hub_download
65
+ from gradio_webrtc import WebRTC
66
+ from twilio.rest import Client
67
+ import os
68
+ from inference import YOLOv10
69
+
70
+ model_file = hf_hub_download(
71
+ repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
72
+ )
73
+
74
+ model = YOLOv10(model_file)
75
+
76
+ account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
77
+ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
78
+
79
+ if account_sid and auth_token:
80
+ client = Client(account_sid, auth_token)
81
+
82
+ token = client.tokens.create()
83
+
84
+ rtc_configuration = {
85
+ "iceServers": token.ice_servers,
86
+ "iceTransportPolicy": "relay",
87
+ }
88
+ else:
89
+ rtc_configuration = None
90
+
91
+
92
+ def detection(image, conf_threshold=0.3):
93
+ image = cv2.resize(image, (model.input_width, model.input_height))
94
+ new_image = model.detect_objects(image, conf_threshold)
95
+ return cv2.resize(new_image, (500, 500))
96
+
97
+
98
+ css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
99
+ .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
100
+
101
+
102
+ with gr.Blocks(css=css) as demo:
103
+ gr.HTML(
104
+ """
105
+ <h1 style='text-align: center'>
106
+ YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
107
+ </h1>
108
+ """
109
+ )
110
+ gr.HTML(
111
+ """
112
+ <h3 style='text-align: center'>
113
+ <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
114
+ </h3>
115
+ """
116
+ )
117
+ with gr.Column(elem_classes=["my-column"]):
118
+ with gr.Group(elem_classes=["my-group"]):
119
+ image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
120
+ conf_threshold = gr.Slider(
121
+ label="Confidence Threshold",
122
+ minimum=0.0,
123
+ maximum=1.0,
124
+ step=0.05,
125
+ value=0.30,
126
+ )
127
+
128
+ image.stream(
129
+ fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
130
+ )
131
+
132
+ if __name__ == "__main__":
133
+ demo.launch()