Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,205 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import cv2
|
| 3 |
-
# import numpy as np
|
| 4 |
-
# import onnxruntime as ort
|
| 5 |
-
|
| 6 |
-
# # Load the ONNX model using onnxruntime
|
| 7 |
-
# onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path
|
| 8 |
-
# session = ort.InferenceSession(onnx_model_path)
|
| 9 |
-
|
| 10 |
-
# # Function to perform object detection with the ONNX model
|
| 11 |
-
# def detect_objects(frame, confidence_threshold=0.5):
|
| 12 |
-
# # Convert the frame from BGR (OpenCV) to RGB
|
| 13 |
-
# image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 14 |
-
|
| 15 |
-
# # Preprocessing: Resize and normalize the image
|
| 16 |
-
# # Assuming YOLO model input is 640x640, update according to your model's input size
|
| 17 |
-
# input_size = (640, 640)
|
| 18 |
-
# image_resized = cv2.resize(image, input_size)
|
| 19 |
-
# image_normalized = image_resized / 255.0 # Normalize to [0, 1]
|
| 20 |
-
# image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format
|
| 21 |
-
# image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension
|
| 22 |
-
|
| 23 |
-
# # Perform inference
|
| 24 |
-
# inputs = {session.get_inputs()[0].name: image_input}
|
| 25 |
-
# outputs = session.run(None, inputs)
|
| 26 |
-
|
| 27 |
-
# # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
|
| 28 |
-
# # boxes, confidences, class_probs = outputs
|
| 29 |
-
|
| 30 |
-
# # # Post-processing: Filter boxes by confidence threshold
|
| 31 |
-
# # detections = []
|
| 32 |
-
# # for i, confidence in enumerate(confidences[0]):
|
| 33 |
-
# # if confidence >= confidence_threshold:
|
| 34 |
-
# # x1, y1, x2, y2 = boxes[0][i]
|
| 35 |
-
# # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
|
| 36 |
-
# # detections.append((x1, y1, x2, y2, confidence, class_id))
|
| 37 |
-
|
| 38 |
-
# # # Draw bounding boxes and labels on the image
|
| 39 |
-
# # for (x1, y1, x2, y2, confidence, class_id) in detections:
|
| 40 |
-
# # color = (0, 255, 0) # Green color for bounding boxes
|
| 41 |
-
# # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
| 42 |
-
# # label = f"Class {class_id}: {confidence:.2f}"
|
| 43 |
-
# # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 44 |
-
|
| 45 |
-
# # # Convert the image back to BGR for displaying in Gradio
|
| 46 |
-
# # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 47 |
-
|
| 48 |
-
# return outputs
|
| 49 |
-
|
| 50 |
-
# # Gradio interface to use the webcam for real-time object detection
|
| 51 |
-
# # Added a slider for the confidence threshold
|
| 52 |
-
# iface = gr.Interface(fn=detect_objects,
|
| 53 |
-
# #inputs=[
|
| 54 |
-
# # gr.Video(sources="webcam", type="numpy"), # Webcam input
|
| 55 |
-
# inputs = gr.Image(sources=["webcam"], type="numpy"),
|
| 56 |
-
# # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
|
| 57 |
-
# # ],
|
| 58 |
-
# outputs="image") # Show output image with bounding boxes
|
| 59 |
-
|
| 60 |
-
# iface.launch()
|
| 61 |
-
###
|
| 62 |
-
# import gradio as gr
|
| 63 |
-
# import cv2
|
| 64 |
-
# from huggingface_hub import hf_hub_download
|
| 65 |
-
# from gradio_webrtc import WebRTC
|
| 66 |
-
# from twilio.rest import Client
|
| 67 |
-
# import os
|
| 68 |
-
# from inference import YOLOv8
|
| 69 |
-
|
| 70 |
-
# model_file = hf_hub_download(
|
| 71 |
-
# repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx"
|
| 72 |
-
# )
|
| 73 |
-
|
| 74 |
-
# model = YOLOv8(model_file)
|
| 75 |
-
|
| 76 |
-
# account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
| 77 |
-
# auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
| 78 |
-
|
| 79 |
-
# if account_sid and auth_token:
|
| 80 |
-
# client = Client(account_sid, auth_token)
|
| 81 |
-
|
| 82 |
-
# token = client.tokens.create()
|
| 83 |
-
|
| 84 |
-
# rtc_configuration = {
|
| 85 |
-
# "iceServers": token.ice_servers,
|
| 86 |
-
# "iceTransportPolicy": "relay",
|
| 87 |
-
# }
|
| 88 |
-
# else:
|
| 89 |
-
# rtc_configuration = None
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# def detection(image, conf_threshold=0.3):
|
| 93 |
-
# image = cv2.resize(image, (model.input_width, model.input_height))
|
| 94 |
-
# new_image = model.detect_objects(image, conf_threshold)
|
| 95 |
-
# return cv2.resize(new_image, (500, 500))
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 99 |
-
# .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# with gr.Blocks(css=css) as demo:
|
| 103 |
-
# gr.HTML(
|
| 104 |
-
# """
|
| 105 |
-
# <h1 style='text-align: center'>
|
| 106 |
-
# YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
|
| 107 |
-
# </h1>
|
| 108 |
-
# """
|
| 109 |
-
# )
|
| 110 |
-
# gr.HTML(
|
| 111 |
-
# """
|
| 112 |
-
# <h3 style='text-align: center'>
|
| 113 |
-
# <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
| 114 |
-
# </h3>
|
| 115 |
-
# """
|
| 116 |
-
# )
|
| 117 |
-
# with gr.Column(elem_classes=["my-column"]):
|
| 118 |
-
# with gr.Group(elem_classes=["my-group"]):
|
| 119 |
-
# image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
| 120 |
-
# conf_threshold = gr.Slider(
|
| 121 |
-
# label="Confidence Threshold",
|
| 122 |
-
# minimum=0.0,
|
| 123 |
-
# maximum=1.0,
|
| 124 |
-
# step=0.05,
|
| 125 |
-
# value=0.30,
|
| 126 |
-
# )
|
| 127 |
-
|
| 128 |
-
# image.stream(
|
| 129 |
-
# fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
|
| 130 |
-
# )
|
| 131 |
-
|
| 132 |
-
# if __name__ == "__main__":
|
| 133 |
-
# demo.launch()
|
| 134 |
-
|
| 135 |
-
# import gradio as gr
|
| 136 |
-
# import numpy as np
|
| 137 |
-
# import cv2
|
| 138 |
-
# from ultralytics import YOLO
|
| 139 |
-
|
| 140 |
-
# model = YOLO('Model_IV.pt')
|
| 141 |
-
|
| 142 |
-
# def transform_cv2(frame, transform):
|
| 143 |
-
# if transform == "cartoon":
|
| 144 |
-
# # prepare color
|
| 145 |
-
# img_color = cv2.pyrDown(cv2.pyrDown(frame))
|
| 146 |
-
# for _ in range(6):
|
| 147 |
-
# img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
| 148 |
-
# img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
| 149 |
-
|
| 150 |
-
# # prepare edges
|
| 151 |
-
# img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
| 152 |
-
# img_edges = cv2.adaptiveThreshold(
|
| 153 |
-
# cv2.medianBlur(img_edges, 7),
|
| 154 |
-
# 255,
|
| 155 |
-
# cv2.ADAPTIVE_THRESH_MEAN_C,
|
| 156 |
-
# cv2.THRESH_BINARY,
|
| 157 |
-
# 9,
|
| 158 |
-
# 2,
|
| 159 |
-
# )
|
| 160 |
-
# img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
| 161 |
-
# # combine color and edges
|
| 162 |
-
# img = cv2.bitwise_and(img_color, img_edges)
|
| 163 |
-
# return img
|
| 164 |
-
# elif transform == "edges":
|
| 165 |
-
# # perform edge detection
|
| 166 |
-
# img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
|
| 167 |
-
# return img
|
| 168 |
-
# else:
|
| 169 |
-
# return np.flipud(frame)
|
| 170 |
-
|
| 171 |
-
# with gr.Blocks() as demo:
|
| 172 |
-
# with gr.Row():
|
| 173 |
-
# with gr.Column():
|
| 174 |
-
# transform = gr.Dropdown(choices=["cartoon", "edges", "flip"],
|
| 175 |
-
# value="flip", label="Transformation")
|
| 176 |
-
# input_img = gr.Image(sources=["webcam"], type="numpy")
|
| 177 |
-
# with gr.Column():
|
| 178 |
-
# output_img = gr.Image(streaming=True)
|
| 179 |
-
# dep = input_img.stream(transform_cv2, [input_img, transform], [output_img],
|
| 180 |
-
# time_limit=30, stream_every=0.1, concurrency_limit=30)
|
| 181 |
-
|
| 182 |
-
# if __name__ == "__main__":
|
| 183 |
-
# demo.launch()
|
| 184 |
-
|
| 185 |
-
###
|
| 186 |
-
|
| 187 |
-
# import gradio as gr
|
| 188 |
-
# import torch
|
| 189 |
-
# import cv2
|
| 190 |
-
|
| 191 |
-
# # Load the YOLOv8 model
|
| 192 |
-
# model = torch.hub.load('ultralytics/yolov8', 'yolov8s', trust_repo=True)
|
| 193 |
-
# model.load_state_dict(torch.load('Model_IV'))
|
| 194 |
-
|
| 195 |
-
# def inference(img):
|
| 196 |
-
# results = model(img)
|
| 197 |
-
# annotated_img = results.render()[0]
|
| 198 |
-
# return annotated_img
|
| 199 |
-
|
| 200 |
-
# iface = gr.Interface(fn=inference, inputs="webcam", outputs="image")
|
| 201 |
-
# iface.launch()
|
| 202 |
-
|
| 203 |
import gradio as gr
|
| 204 |
import torch
|
| 205 |
from PIL import Image
|
|
@@ -209,36 +7,13 @@ import onnxruntime as ort
|
|
| 209 |
import cv2
|
| 210 |
import numpy as np
|
| 211 |
|
| 212 |
-
# Load your model
|
| 213 |
-
|
| 214 |
-
# model = YOLO("Model_IV.pt")
|
| 215 |
-
# model = torch.load("Model_IV.pt")
|
| 216 |
-
# model.eval()
|
| 217 |
-
# checkpoint = torch.load("Model_IV.pt")
|
| 218 |
-
# model.load_state_dict(checkpoint) # Load the saved weights
|
| 219 |
-
# model.eval() # Set the model to evaluation mode
|
| 220 |
-
|
| 221 |
# Load the onnx model
|
| 222 |
model = ort.InferenceSession("Model_IV.onnx")
|
| 223 |
|
| 224 |
-
# Define preprocessing
|
| 225 |
-
# transform = T.Compose([
|
| 226 |
-
# T.Resize((224, 224)), # Adjust to your model's input size
|
| 227 |
-
# T.ToTensor(),
|
| 228 |
-
# ])
|
| 229 |
-
|
| 230 |
def predict(image):
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
# # # Make prediction
|
| 235 |
-
# # with torch.no_grad():
|
| 236 |
-
# # output = model(img_tensor)
|
| 237 |
-
|
| 238 |
-
# # Process output (adjust based on your model's format)
|
| 239 |
-
# results = model(image)
|
| 240 |
-
# annotated_img = results[0].plot()
|
| 241 |
-
# return annotated_img
|
| 242 |
|
| 243 |
# Preprocess the image
|
| 244 |
|
|
@@ -249,9 +24,6 @@ def predict(image):
|
|
| 249 |
# Resize the image to the model's input shape
|
| 250 |
image = cv2.resize(image, (input_shape[2], input_shape[3]))
|
| 251 |
|
| 252 |
-
original_image_shape = image.shape
|
| 253 |
-
print("Original image shape:", original_image_shape)
|
| 254 |
-
|
| 255 |
# Reshape the image to match the model's input shape
|
| 256 |
image = image.reshape(3, 640, 640)
|
| 257 |
|
|
@@ -266,34 +38,20 @@ def predict(image):
|
|
| 266 |
if len(input_shape) == 4 and input_shape[0] == 1:
|
| 267 |
image = np.expand_dims(image, axis=0)
|
| 268 |
image = image.astype(np.float32)
|
| 269 |
-
|
| 270 |
-
print("Input image shape:", image.shape)
|
| 271 |
|
| 272 |
# Make prediction
|
|
|
|
| 273 |
output = model.run(None, {input_name: image})
|
| 274 |
-
|
| 275 |
-
# print("Output shape:", output.shape)
|
| 276 |
-
|
| 277 |
-
# print("type output:", type(output))
|
| 278 |
-
# print(output)
|
| 279 |
|
| 280 |
# Postprocess output image
|
| 281 |
-
|
| 282 |
annotated_img = output[0]
|
| 283 |
-
|
| 284 |
-
|
| 285 |
|
| 286 |
-
#
|
| 287 |
-
# annotated_img = classes[output[0][0].argmax(0)]
|
| 288 |
-
|
| 289 |
-
print("Annotated image type before normalization:", type(annotated_img))
|
| 290 |
# print("Annotated image before normalization:", annotated_img)
|
| 291 |
print("Min value of image before normalization:", np.min(annotated_img))
|
| 292 |
print("Max value of image before normalization:", np.max(annotated_img))
|
| 293 |
|
| 294 |
-
# # Normalize output image using ImageNet-style normalization (again)
|
| 295 |
-
# annotated_img = (annotated_img / 255.0 - mean)/std
|
| 296 |
-
|
| 297 |
# Normalize output image using Min-Max normalization
|
| 298 |
min_val = np.min(annotated_img)
|
| 299 |
max_val = np.max(annotated_img)
|
|
@@ -301,7 +59,7 @@ def predict(image):
|
|
| 301 |
|
| 302 |
print("Min value of image after normalization:", np.min(annotated_img))
|
| 303 |
print("Max value of image after normalization:", np.max(annotated_img))
|
| 304 |
-
print("annotated_img type after normalization:", type(annotated_img))
|
| 305 |
# print("annotated_img shape after normalization:", annotated_img.shape)
|
| 306 |
|
| 307 |
# Reshape the image to match the PIL Image input shape
|
|
@@ -310,20 +68,18 @@ def predict(image):
|
|
| 310 |
print("annotated_img shape after reshape:", annotated_img.shape)
|
| 311 |
|
| 312 |
# Convert to PIL Image
|
| 313 |
-
annotated_img = Image.fromarray(annotated_img)
|
| 314 |
-
|
| 315 |
print("PIL Image type:", type(annotated_img))
|
| 316 |
-
# print("PIL Image shape:", annotated_img.shape)
|
| 317 |
|
| 318 |
return annotated_img
|
| 319 |
|
| 320 |
# Gradio interface
|
| 321 |
demo = gr.Interface(
|
| 322 |
fn=predict,
|
| 323 |
-
inputs=gr.Image(sources=["webcam"], type="numpy"), #
|
| 324 |
-
|
| 325 |
-
outputs=gr.Image(type="pil"), # Accepts image input
|
| 326 |
)
|
| 327 |
|
|
|
|
| 328 |
if __name__ == "__main__":
|
| 329 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
|
|
|
| 7 |
import cv2
|
| 8 |
import numpy as np
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Load the onnx model
|
| 11 |
model = ort.InferenceSession("Model_IV.onnx")
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def predict(image):
|
| 14 |
+
# Save shape of original image for later
|
| 15 |
+
original_image_shape = image.shape
|
| 16 |
+
print("Original image shape:", original_image_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Preprocess the image
|
| 19 |
|
|
|
|
| 24 |
# Resize the image to the model's input shape
|
| 25 |
image = cv2.resize(image, (input_shape[2], input_shape[3]))
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# Reshape the image to match the model's input shape
|
| 28 |
image = image.reshape(3, 640, 640)
|
| 29 |
|
|
|
|
| 38 |
if len(input_shape) == 4 and input_shape[0] == 1:
|
| 39 |
image = np.expand_dims(image, axis=0)
|
| 40 |
image = image.astype(np.float32)
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Make prediction
|
| 43 |
+
print("Input image shape:", image.shape)
|
| 44 |
output = model.run(None, {input_name: image})
|
| 45 |
+
print("Output image shape:", output[0].shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Postprocess output image
|
|
|
|
| 48 |
annotated_img = output[0]
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# print("Annotated image type before normalization:", type(annotated_img))
|
|
|
|
|
|
|
|
|
|
| 51 |
# print("Annotated image before normalization:", annotated_img)
|
| 52 |
print("Min value of image before normalization:", np.min(annotated_img))
|
| 53 |
print("Max value of image before normalization:", np.max(annotated_img))
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
# Normalize output image using Min-Max normalization
|
| 56 |
min_val = np.min(annotated_img)
|
| 57 |
max_val = np.max(annotated_img)
|
|
|
|
| 59 |
|
| 60 |
print("Min value of image after normalization:", np.min(annotated_img))
|
| 61 |
print("Max value of image after normalization:", np.max(annotated_img))
|
| 62 |
+
# print("annotated_img type after normalization:", type(annotated_img))
|
| 63 |
# print("annotated_img shape after normalization:", annotated_img.shape)
|
| 64 |
|
| 65 |
# Reshape the image to match the PIL Image input shape
|
|
|
|
| 68 |
print("annotated_img shape after reshape:", annotated_img.shape)
|
| 69 |
|
| 70 |
# Convert to PIL Image
|
| 71 |
+
annotated_img = Image.fromarray(annotated_img) # Hits a ValueError in this line
|
|
|
|
| 72 |
print("PIL Image type:", type(annotated_img))
|
|
|
|
| 73 |
|
| 74 |
return annotated_img
|
| 75 |
|
| 76 |
# Gradio interface
|
| 77 |
demo = gr.Interface(
|
| 78 |
fn=predict,
|
| 79 |
+
inputs=gr.Image(sources=["webcam"], type="numpy"), # Image input from webcam, as a numpy array
|
| 80 |
+
outputs=gr.Image(type="pil"), # Image output from model, as a PIL Image
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
+
# Launch interface
|
| 84 |
if __name__ == "__main__":
|
| 85 |
demo.launch()
|