Spaces:
Sleeping
Sleeping
import gradio as gr | |
# import torch | |
# from PIL import Image | |
# import torchvision.transforms as T | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
# Load the PT model | |
model = YOLO("Model_IV.pt") | |
def predict(image): | |
# Preprocessing: Convert the colour space to RGB | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# print("converted the colour to RGB.") | |
# Make prediction | |
results = model(image) | |
#print("ran the model") | |
# Postprocessing: Convert the colour space back to BGR | |
annotated_img = results[0].plot() | |
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_RGB2BGR) | |
# print("converted the colour to BGR.") | |
return annotated_img | |
# Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(sources=["webcam"], type="numpy"), # Accepts image input | |
outputs="image" # Customize based on your output format | |
) | |
if __name__ == "__main__": | |
demo.launch() |