File size: 941 Bytes
acfde9f
d823f73
 
 
acfde9f
 
 
 
3847261
acfde9f
 
 
8ae4fc0
575d751
8ae4fc0
575d751
8ae4fc0
acfde9f
8ae4fc0
cbf9bde
8ae4fc0
 
cbf9bde
8ae4fc0
c451c54
acfde9f
 
 
 
 
e852640
acfde9f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
# import torch
# from PIL import Image
# import torchvision.transforms as T
from ultralytics import YOLO
import cv2
import numpy as np

# Load the PT model
model = YOLO("Model_IV.pt")

def predict(image):
    # Preprocessing: Convert the colour space to RGB
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # print("converted the colour to RGB.")
    
    # Make prediction 
    results = model(image)
    #print("ran the model")

    # Postprocessing: Convert the colour space back to BGR
    annotated_img = results[0].plot()
    annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_RGB2BGR)
    # print("converted the colour to BGR.")
    
    return annotated_img
    
# Gradio interface
demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(sources=["webcam"], type="numpy"),  # Accepts image input
    outputs="image" # Customize based on your output format
)

if __name__ == "__main__":
    demo.launch()