Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import json | |
import os | |
from pydantic import BaseModel, Field | |
from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used | |
import time # Added for potential small delays if needed | |
from langchain_openai import ChatOpenAI | |
from langchain_core.messages import HumanMessage # Not directly used in provided snippet | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet | |
from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet | |
import gspread | |
import tempfile | |
import time | |
from google.oauth2 import service_account | |
import tiktoken | |
st.set_page_config( | |
page_title="Candidate Matching App", | |
page_icon="π¨βπ»π―", | |
layout="wide" | |
) | |
os.environ["STREAMLIT_HOME"] = tempfile.gettempdir() | |
os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1" | |
# Define pydantic model for structured output | |
class Shortlist(BaseModel): | |
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.") | |
candidate_name: str = Field(description="The name of the candidate.") | |
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.") | |
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.") | |
candidate_location: str = Field(description="The location of the candidate.") | |
justification: str = Field(description="Justification for the shortlisted candidate with the fit score") | |
# Function to calculate tokens | |
def calculate_tokens(text, model="gpt-4o-mini"): | |
try: | |
if "gpt-4" in model: | |
encoding = tiktoken.encoding_for_model("gpt-4o-mini") | |
elif "gpt-3.5" in model: | |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
else: | |
encoding = tiktoken.get_encoding("cl100k_base") | |
return len(encoding.encode(text)) | |
except Exception as e: | |
return len(text) // 4 | |
# Function to display token usage | |
def display_token_usage(): | |
if 'total_input_tokens' not in st.session_state: | |
st.session_state.total_input_tokens = 0 | |
if 'total_output_tokens' not in st.session_state: | |
st.session_state.total_output_tokens = 0 | |
total_input = st.session_state.total_input_tokens | |
total_output = st.session_state.total_output_tokens | |
total_tokens = total_input + total_output | |
model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set | |
if model_to_check == "gpt-4o-mini": | |
input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens) | |
output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens) | |
elif "gpt-4" in model_to_check: # Fallback for other gpt-4 | |
input_cost_per_1k = 0.005 | |
output_cost_per_1k = 0.015 # General gpt-4 pricing can vary | |
else: # Assume gpt-3.5-turbo pricing | |
input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens | |
output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens | |
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k) | |
st.subheader("π Token Usage Statistics (for last processed job)") | |
col1, col2, col3 = st.columns(3) | |
with col1: st.metric("Input Tokens", f"{total_input:,}") | |
with col2: st.metric("Output Tokens", f"{total_output:,}") | |
with col3: st.metric("Total Tokens", f"{total_tokens:,}") | |
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}") | |
return total_tokens | |
# Function to parse and normalize tech stacks | |
def parse_tech_stack(stack): | |
if pd.isna(stack) or stack == "" or stack is None: return set() | |
if isinstance(stack, set): return stack | |
try: | |
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"): | |
items = stack.strip("{}").split(",") | |
return set(item.strip().strip("'\"") for item in items if item.strip()) | |
return set(map(lambda x: x.strip().lower(), str(stack).split(','))) | |
except Exception as e: | |
st.error(f"Error parsing tech stack: {e}") | |
return set() | |
def display_tech_stack(stack_set): | |
return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set) | |
def get_matching_candidates(job_stack, candidates_df): | |
matched = [] | |
job_stack_set = parse_tech_stack(job_stack) | |
for _, candidate in candidates_df.iterrows(): | |
candidate_stack = parse_tech_stack(candidate['Key Tech Stack']) | |
common = job_stack_set & candidate_stack | |
if len(common) >= 2: # Original condition | |
matched.append({ | |
"Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"], | |
"Degree & Education": candidate["Degree & University"], | |
"Years of Experience": candidate["Years of Experience"], | |
"Current Title & Company": candidate['Current Title & Company'], | |
"Key Highlights": candidate["Key Highlights"], | |
"Location": candidate["Location (from most recent experience)"], | |
"Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack | |
}) | |
return matched | |
def setup_llm(): | |
"""Set up the LangChain LLM with structured output""" | |
# Define the model to use | |
model_name = "gpt-4o-mini" | |
# Store model name in session state for token calculation | |
if 'model_name' not in st.session_state: | |
st.session_state.model_name = model_name | |
# Create LLM instance | |
llm = ChatOpenAI( | |
model=model_name, | |
temperature=0.3, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2, | |
) | |
# Create structured output | |
sum_llm = llm.with_structured_output(Shortlist) | |
# Create system prompt | |
system = """You are an expert Tech Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the | |
the profile is according to job. | |
First of all check the location of the candidate, if the location is not in the range of the job location then reject the candidate directly without any further analysis. | |
for example if the job location is New York and the candidate is in San Francisco or outside the new york state then directly reject the candidate without any further analysis. Similarly for other states as well. | |
Try to ensure following points while estimating the candidate's fit score: | |
For education: | |
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points | |
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points | |
Tier3 - Unknown or unranked institutions - Lower points or reject | |
Startup Experience Requirement: | |
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D) | |
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc. | |
Next give more priority to candidates who have worked on similar industry in the past and have good experience(3-5 yrs minimum) in it which alligns with the work in the job's company. | |
Also penalize candidates if they change companies frequently give less score. | |
The fit score signifies based on following metrics: | |
1β5 - Poor Fit - Auto-reject | |
6β7 - Weak Fit - Auto-reject | |
8.0β8.7 - Moderate Fit - Auto-reject | |
8.8β10 - STRONG Fit - Include in results | |
Each candidate's fit score should be calculated based on a weighted evaluation of their background and must be distinct even if candidates have similar profiles. | |
""" | |
# Create query prompt | |
query_prompt = ChatPromptTemplate.from_messages([ | |
("system", system), | |
("human", """ | |
You are an expert Recruitor. Your task is to determine if the candidate matches the given job. | |
Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.). | |
Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score. | |
For this you will be provided with the follwing inputs of job and candidates: | |
Job Details | |
Company: {Company} | |
Role: {Role} | |
About Company: {desc} | |
Locations: {Locations} | |
Tech Stack: {Tech_Stack} | |
Industry: {Industry} | |
Candidate Details: | |
Full Name: {Full_Name} | |
LinkedIn URL: {LinkedIn_URL} | |
Current Title & Company: {Current_Title_Company} | |
Years of Experience: {Years_of_Experience} | |
Degree & University: {Degree_University} | |
Key Tech Stack: {Key_Tech_Stack} | |
Key Highlights: {Key_Highlights} | |
Location (from most recent experience): {cand_Location} | |
Past_Experience: {Experience} | |
Answer in the structured manner as per the schema. | |
If any parameter is Unknown try not to include in the summary, only include those parameters which are known. | |
The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals. | |
"""), | |
]) | |
# Chain the prompt and LLM | |
cat_class = query_prompt | sum_llm | |
return cat_class | |
def call_llm(candidate_data, job_data, llm_chain): | |
try: | |
job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "") | |
candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "") | |
payload = { | |
"Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""), | |
"desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""), | |
"Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""), | |
"Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""), | |
"Current_Title_Company": candidate_data.get("Current Title & Company", ""), | |
"Years_of_Experience": candidate_data.get("Years of Experience", ""), | |
"Degree_University": candidate_data.get("Degree & Education", ""), | |
"Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""), | |
"cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "") | |
} | |
payload_str = json.dumps(payload) | |
input_tokens = calculate_tokens(payload_str, st.session_state.model_name) | |
response = llm_chain.invoke(payload) | |
# print(candidate_data.get("Experience", "")) # Kept for your debugging if needed | |
response_str = f"candidate_name: {response.candidate_name} URL:{response.candidate_url} summ:{response.candidate_summary} loc: {response.candidate_location} just {response.justification} fit_score: {float(f'{response.fit_score:.3f}')}." # Truncated | |
output_tokens = calculate_tokens(response_str, st.session_state.model_name) | |
if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 | |
if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 | |
st.session_state.total_input_tokens += input_tokens | |
st.session_state.total_output_tokens += output_tokens | |
return { | |
"candidate_name": response.candidate_name, "candidate_url": response.candidate_url, | |
"candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location, | |
"fit_score": response.fit_score, "justification": response.justification | |
} | |
except Exception as e: | |
st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}") | |
return { | |
"candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""), | |
"candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"), | |
"fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}" | |
} | |
def process_candidates_for_job(job_row, candidates_df, llm_chain=None): | |
st.session_state.total_input_tokens = 0 # Reset for this job | |
st.session_state.total_output_tokens = 0 | |
if llm_chain is None: | |
with st.spinner("Setting up LLM..."): llm_chain = setup_llm() | |
selected_candidates = [] | |
job_data = { | |
"Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""), | |
"Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "") | |
} | |
with st.spinner("Finding matching candidates based on tech stack..."): | |
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df) | |
if not matching_candidates: | |
st.warning("No candidates with matching tech stack found for this job.") | |
return [] | |
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...") | |
candidates_progress = st.progress(0) | |
candidate_status = st.empty() # For live updates | |
for i, candidate_data in enumerate(matching_candidates): | |
# *** MODIFICATION: Check for stop flag *** | |
if st.session_state.get('stop_processing_flag', False): | |
candidate_status.warning("Processing stopped by user.") | |
time.sleep(1) # Allow message to be seen | |
break | |
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}") | |
response = call_llm(candidate_data, job_data, llm_chain) | |
response_dict = { | |
"Name": response["candidate_name"], "LinkedIn": response["candidate_url"], | |
"summary": response["candidate_summary"], "Location": response["candidate_location"], | |
"Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"], | |
"Educational Background": candidate_data.get("Degree & Education", ""), | |
"Years of Experience": candidate_data.get("Years of Experience", ""), | |
"Current Title & Company": candidate_data.get("Current Title & Company", "") | |
} | |
# *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing *** | |
if response["fit_score"] >= 8.800: | |
selected_candidates.append(response_dict) | |
# This st.markdown will be visible during processing and cleared on the next full script rerun | |
# after this processing block finishes or is stopped. | |
st.markdown( | |
f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) " | |
f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})" | |
) | |
candidates_progress.progress((i + 1) / len(matching_candidates)) | |
candidates_progress.empty() | |
candidate_status.empty() | |
if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped | |
if selected_candidates: | |
st.success(f"β LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!") | |
else: | |
st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.") | |
return selected_candidates | |
def main(): | |
st.title("π¨βπ» Candidate Matching App") | |
if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic | |
if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {} | |
if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None | |
# *** MODIFICATION: Initialize stop flag *** | |
if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False | |
st.write("This app matches job listings with candidate profiles...") | |
with st.sidebar: | |
st.header("API Configuration") | |
api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input") | |
if api_key: | |
os.environ["OPENAI_API_KEY"] = api_key | |
SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct | |
SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] | |
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) | |
# Initialize LLM chain once API key is set | |
if st.session_state.llm_chain is None: | |
with st.spinner("Setting up LLM..."): | |
st.session_state.llm_chain = setup_llm() | |
st.success("API Key set") | |
else: | |
st.warning("Please enter OpenAI API Key to use LLM features") | |
st.session_state.llm_chain = None # Clear chain if key removed | |
try: | |
gc = gspread.authorize(creds) | |
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k') | |
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4') | |
except Exception as e: | |
st.error(f"Failed to connect to Google Sheets. Please Ensure the API key is correct") | |
st.stop() | |
if not os.environ.get("OPENAI_API_KEY"): | |
st.warning("β οΈ You need to provide an OpenAI API key in the sidebar to use this app.") | |
st.stop() | |
if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"): | |
with st.spinner("Setting up LLM..."): | |
st.session_state.llm_chain = setup_llm() | |
st.rerun() # Rerun to ensure LLM is ready for the main display logic | |
try: | |
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted') | |
job_data = job_worksheet.get_all_values() | |
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated') | |
candidate_data = candidate_worksheet.get_all_values() | |
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore') | |
jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]] | |
jobs_df1 = jobs_df1.fillna("Unknown") | |
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown") | |
candidates_df.drop_duplicates(subset=['Full Name'], keep='first', inplace=True) | |
with st.expander("Preview uploaded data"): | |
st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(5)) | |
# Column mapping (simplified, ensure your CSVs have these exact names or adjust) | |
# candidates_df = candidates_df.rename(columns={...}) # Add if needed | |
display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh' | |
except Exception as e: | |
st.error(f"Error processing files or data: {e}") | |
st.divider() | |
# def display_job_selection(jobs_df, candidates_df, sh): | |
# st.subheader("Select a job to view potential matches") | |
# job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()] | |
# if 'last_selected_job_index' not in st.session_state: | |
# st.session_state.last_selected_job_index = 0 | |
# selected_job_index = st.selectbox( | |
# "Jobs:", | |
# range(len(job_options)), | |
# format_func=lambda x: job_options[x], | |
# key="job_selectbox" | |
# ) | |
# if selected_job_index != st.session_state.last_selected_job_index: | |
# old_job_key = st.session_state.last_selected_job_index | |
# job_processed_key = f"job_{old_job_key}_processed_successfully" | |
# job_is_processing_key = f"job_{old_job_key}_is_currently_processing" | |
# if job_processed_key in st.session_state: | |
# st.session_state.pop(job_processed_key) | |
# if job_is_processing_key in st.session_state: | |
# st.session_state.pop(job_is_processing_key) | |
# if 'Selected_Candidates' in st.session_state and old_job_key in st.session_state.Selected_Candidates: | |
# st.session_state.Selected_Candidates.pop(old_job_key) | |
# st.session_state.last_selected_job_index = selected_job_index | |
# st.session_state.stop_processing_flag = False | |
# st.cache_data.clear() | |
# st.rerun() | |
# job_row = jobs_df.iloc[selected_job_index] | |
# job_row_stack = parse_tech_stack(job_row["Tech Stack"]) | |
# col_job_details_display, _ = st.columns([2, 1]) | |
# with col_job_details_display: | |
# st.subheader(f"Job Details: {job_row['Role']}") | |
# job_details_dict = { | |
# "Company": job_row["Company"], | |
# "Role": job_row["Role"], | |
# "Description": job_row.get("One liner", "N/A"), | |
# "Locations": job_row.get("Locations", "N/A"), | |
# "Industry": job_row.get("Industry", "N/A"), | |
# "Tech Stack": display_tech_stack(job_row_stack) | |
# } | |
# for key, value in job_details_dict.items(): | |
# st.markdown(f"**{key}:** {value}") | |
# job_processed_key = f"job_{selected_job_index}_processed_successfully" | |
# job_is_processing_key = f"job_{selected_job_index}_is_currently_processing" | |
# st.session_state.setdefault(job_processed_key, False) | |
# st.session_state.setdefault(job_is_processing_key, False) | |
# sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100] | |
# worksheet_exists = False | |
# existing_candidates_from_sheet = [] | |
# try: | |
# cand_ws = sh.worksheet(sheet_name) | |
# worksheet_exists = True | |
# data = cand_ws.get_all_values() | |
# if len(data) > 1: | |
# existing_candidates_from_sheet = data | |
# except Exception: | |
# pass | |
# if not st.session_state[job_processed_key] or existing_candidates_from_sheet: | |
# col_find, col_stop = st.columns(2) | |
# with col_find: | |
# if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}", | |
# disabled=st.session_state[job_is_processing_key]): | |
# if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None: | |
# st.error("OpenAI API key not set or LLM not initialized.") | |
# else: | |
# st.session_state[job_is_processing_key] = True | |
# st.session_state.stop_processing_flag = False | |
# st.session_state.Selected_Candidates[selected_job_index] = [] | |
# st.session_state[job_processed_key] = False | |
# st.rerun() | |
# with col_stop: | |
# if st.session_state[job_is_processing_key]: | |
# if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"): | |
# st.session_state.stop_processing_flag = True | |
# st.cache_data.clear() | |
# st.warning("Stop request sent. Processing will halt shortly.") | |
# st.rerun() | |
# if st.session_state[job_is_processing_key]: | |
# with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."): | |
# processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain) | |
# st.session_state[job_is_processing_key] = False | |
# if not st.session_state.get('stop_processing_flag', False): | |
# if processed_list: | |
# processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True) | |
# st.session_state.Selected_Candidates[selected_job_index] = processed_list | |
# st.session_state[job_processed_key] = True | |
# try: | |
# target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet( | |
# title=sheet_name, rows=max(100, len(processed_list)+10), cols=20) | |
# headers = list(processed_list[0].keys()) | |
# rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list] | |
# target_ws.clear() | |
# target_ws.update('A1', rows) | |
# st.success(f"Results saved to Google Sheet: '{sheet_name}'") | |
# except Exception as e: | |
# st.error(f"Error writing to Google Sheet '{sheet_name}': {e}") | |
# else: | |
# st.info("No suitable candidates found after processing.") | |
# st.session_state.Selected_Candidates[selected_job_index] = [] | |
# st.session_state[job_processed_key] = True | |
# else: | |
# st.info("Processing was stopped by user.") | |
# st.session_state[job_processed_key] = False | |
# st.session_state.Selected_Candidates[selected_job_index] = [] | |
# st.session_state.pop('stop_processing_flag', None) | |
# st.rerun() | |
# should_display = False | |
# final_candidates = [] | |
# if not st.session_state[job_is_processing_key]: | |
# if st.session_state[job_processed_key]: | |
# should_display = True | |
# final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, []) | |
# elif existing_candidates_from_sheet: | |
# should_display = True | |
# headers = existing_candidates_from_sheet[0] | |
# for row in existing_candidates_from_sheet[1:]: | |
# cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))} | |
# try: cand['Fit Score'] = float(cand.get('Fit Score',0)) | |
# except: cand['Fit Score'] = 0.0 | |
# final_candidates.append(cand) | |
# final_candidates.sort(key=lambda x: x.get('Fit Score',0.0), reverse=True) | |
# if not st.session_state[job_processed_key]: | |
# st.info(f"Displaying: '{sheet_name}'.") | |
# time.sleep(10) | |
# if should_display: | |
# col_title, col_copyall = st.columns([3,1]) | |
# with col_title: | |
# st.subheader("Selected Candidates") | |
# with col_copyall: | |
# combined_text = "" | |
# for cand in final_candidates: | |
# combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n" | |
# import json | |
# html = f''' | |
# <button id="copy-all-btn">π Copy All</button> | |
# <script> | |
# const combinedText = {json.dumps(combined_text)}; | |
# document.getElementById("copy-all-btn").onclick = () => {{ | |
# navigator.clipboard.writeText(combinedText); | |
# }}; | |
# </script> | |
# ''' | |
# st.components.v1.html(html, height=60) | |
# if st.session_state.get(job_processed_key) and ( | |
# st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0): | |
# display_token_usage() | |
# for i, candidate in enumerate(final_candidates): | |
# score = candidate.get('Fit Score',0.0) | |
# score_display = f"{score:.3f}" if isinstance(score,(int,float)) else score | |
# exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})" | |
# with st.expander(exp_title): | |
# text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n" | |
# btn = f"copy_btn_job{selected_job_index}_cand{i}" | |
# js = f''' | |
# <script> | |
# function copyToClipboard_{btn}() {{ navigator.clipboard.writeText(`{text_copy}`); }} | |
# </script> | |
# <button onclick="copyToClipboard_{btn}()">π Copy Details</button> | |
# ''' | |
# cols = st.columns([0.82,0.18]) | |
# with cols[1]: st.components.v1.html(js, height=40) | |
# with cols[0]: | |
# st.markdown(f"**Summary:** {candidate.get('summary','N/A')}") | |
# st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}") | |
# st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}") | |
# st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}") | |
# st.markdown(f"**Location:** {candidate.get('Location','N/A')}") | |
# if candidate.get('LinkedIn'): | |
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**") | |
# if candidate.get('justification'): | |
# st.markdown("**Justification:**") | |
# st.info(candidate['justification']) | |
# if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"): | |
# st.session_state[job_processed_key] = False | |
# st.session_state.pop(job_is_processing_key, None) | |
# st.session_state.Selected_Candidates.pop(selected_job_index, None) | |
# st.cache_data.clear() | |
# try: sh.worksheet(sheet_name).clear() | |
# except: pass | |
# st.rerun() | |
def display_job_selection(jobs_df, candidates_df, sh): | |
st.subheader("Select a job to view potential matches") | |
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()] | |
if 'last_selected_job_index' not in st.session_state: | |
st.session_state.last_selected_job_index = 0 | |
selected_job_index = st.selectbox( | |
"Jobs:", | |
range(len(job_options)), | |
format_func=lambda x: job_options[x], | |
key="job_selectbox" | |
) | |
# Clear previous job state when a new job is selected | |
if selected_job_index != st.session_state.last_selected_job_index: | |
old_job_key = st.session_state.last_selected_job_index | |
# Clear job-specific session state | |
job_processed_key = f"job_{old_job_key}_processed_successfully" | |
job_is_processing_key = f"job_{old_job_key}_is_currently_processing" | |
for key in [job_processed_key, job_is_processing_key, 'stop_processing_flag', 'total_input_tokens', 'total_output_tokens']: | |
if key in st.session_state: | |
del st.session_state[key] | |
# Clear selected candidates for the old job | |
if 'Selected_Candidates' in st.session_state and old_job_key in st.session_state.Selected_Candidates: | |
del st.session_state.Selected_Candidates[old_job_key] | |
# Clear cached data | |
st.cache_data.clear() | |
# Update last selected job index | |
st.session_state.last_selected_job_index = selected_job_index | |
# Force rerun to refresh UI | |
st.rerun() | |
job_row = jobs_df.iloc[selected_job_index] | |
job_row_stack = parse_tech_stack(job_row["Tech Stack"]) | |
col_job_details_display, _ = st.columns([2, 1]) | |
with col_job_details_display: | |
st.subheader(f"Job Details: {job_row['Role']}") | |
job_details_dict = { | |
"Company": job_row["Company"], | |
"Role": job_row["Role"], | |
"Description": job_row.get("One liner", "N/A"), | |
"Locations": job_row.get("Locations", "N/A"), | |
"Industry": job_row.get("Industry", "N/A"), | |
"Tech Stack": display_tech_stack(job_row_stack) | |
} | |
for key, value in job_details_dict.items(): | |
st.markdown(f"**{key}:** {value}") | |
job_processed_key = f"job_{selected_job_index}_processed_successfully" | |
job_is_processing_key = f"job_{selected_job_index}_is_currently_processing" | |
st.session_state.setdefault(job_processed_key, False) | |
st.session_state.setdefault(job_is_processing_key, False) | |
sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100] | |
worksheet_exists = False | |
existing_candidates_from_sheet = [] | |
try: | |
cand_ws = sh.worksheet(sheet_name) | |
worksheet_exists = True | |
data = cand_ws.get_all_values() | |
if len(data) > 1: | |
existing_candidates_from_sheet = data | |
except Exception: | |
pass | |
if not st.session_state[job_processed_key] or existing_candidates_from_sheet: | |
col_find, col_stop = st.columns(2) | |
with col_find: | |
if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}", | |
disabled=st.session_state[job_is_processing_key]): | |
if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None: | |
st.error("OpenAI API key not set or LLM not initialized.") | |
else: | |
st.session_state[job_is_processing_key] = True | |
st.session_state.stop_processing_flag = False | |
st.session_state.Selected_Candidates[selected_job_index] = [] | |
st.rerun() | |
with col_stop: | |
if st.session_state[job_is_processing_key]: | |
if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"): | |
st.session_state.stop_processing_flag = True | |
st.cache_data.clear() | |
st.warning("Stop request sent. Processing will halt shortly.") | |
st.rerun() | |
if st.session_state[job_is_processing_key]: | |
with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."): | |
processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain) | |
st.session_state[job_is_processing_key] = False | |
if not st.session_state.get('stop_processing_flag', False): | |
if processed_list: | |
processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True) | |
st.session_state.Selected_Candidates[selected_job_index] = processed_list | |
st.session_state[job_processed_key] = True | |
try: | |
target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet( | |
title=sheet_name, rows=max(100, len(processed_list)+10), cols=20) | |
headers = list(processed_list[0].keys()) | |
rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list] | |
target_ws.clear() | |
target_ws.update('A1', rows) | |
st.success(f"Results saved to Google Sheet: '{sheet_name}'") | |
except Exception as e: | |
st.error(f"Error writing to Google Sheet '{sheet_name}': {e}") | |
else: | |
st.info("No suitable candidates found after processing.") | |
st.session_state.Selected_Candidates[selected_job_index] = [] | |
st.session_state[job_processed_key] = True | |
else: | |
st.info("Processing was stopped by user.") | |
st.session_state[job_processed_key] = False | |
st.session_state.Selected_Candidates[selected_job_index] = [] | |
st.session_state.pop('stop_processing_flag', None) | |
st.rerun() | |
should_display = False | |
final_candidates = [] | |
if not st.session_state[job_is_processing_key]: | |
if st.session_state[job_processed_key]: | |
should_display = True | |
final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, []) | |
elif existing_candidates_from_sheet: | |
should_display = True | |
headers = existing_candidates_from_sheet[0] | |
for row in existing_candidates_from_sheet[1:]: | |
cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))} | |
try: cand['Fit Score'] = float(cand.get('Fit Score',0)) | |
except: cand['Fit Score'] = 0.0 | |
final_candidates.append(cand) | |
final_candidates.sort(key=lambda x: x.get('Fit Score',0.0), reverse=True) | |
if should_display: | |
col_title, col_copyall = st.columns([3,1]) | |
with col_title: | |
st.subheader("Selected Candidates") | |
with col_copyall: | |
combined_text = "" | |
for cand in final_candidates: | |
combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n" | |
import json | |
html = f''' | |
<button id="copy-all-btn">π Copy All</button> | |
<script> | |
const combinedText = {json.dumps(combined_text)}; | |
document.getElementById("copy-all-btn").onclick = () => {{ | |
navigator.clipboard.writeText(combinedText); | |
}}; | |
</script> | |
''' | |
st.components.v1.html(html, height=60) | |
if st.session_state.get(job_processed_key) and ( | |
st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0): | |
display_token_usage() | |
for i, candidate in enumerate(final_candidates): | |
score = candidate.get('Fit Score',0.0) | |
score_display = f"{score:.3f}" if isinstance(score,(int,float)) else score | |
exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})" | |
with st.expander(exp_title): | |
text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n" | |
btn = f"copy_btn_job{selected_job_index}_cand{i}" | |
js = f''' | |
<script> | |
function copyToClipboard_{btn}() {{ navigator.clipboard.writeText(`{text_copy}`); }} | |
</script> | |
<button onclick="copyToClipboard_{btn}()">π Copy Details</button> | |
''' | |
cols = st.columns([0.82,0.18]) | |
with cols[1]: st.components.v1.html(js, height=40) | |
with cols[0]: | |
st.markdown(f"**Summary:** {candidate.get('summary','N/A')}") | |
st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}") | |
st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}") | |
st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}") | |
st.markdown(f"**Location:** {candidate.get('Location','N/A')}") | |
if candidate.get('LinkedIn'): | |
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**") | |
if candidate.get('justification'): | |
st.markdown("**Justification:**") | |
st.info(candidate['justification']) | |
if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"): | |
st.session_state[job_processed_key] = False | |
st.session_state.pop(job_is_processing_key, None) | |
st.session_state.Selected_Candidates.pop(selected_job_index, None) | |
st.cache_data.clear() | |
try: sh.worksheet(sheet_name).clear() | |
except: pass | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |