Spaces:
Sleeping
Sleeping
Update src/app_job_copy_1.py
Browse files- src/app_job_copy_1.py +213 -12
src/app_job_copy_1.py
CHANGED
|
@@ -377,6 +377,205 @@ def main():
|
|
| 377 |
st.error(f"Error processing files or data: {e}")
|
| 378 |
st.divider()
|
| 379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
def display_job_selection(jobs_df, candidates_df, sh):
|
| 381 |
st.subheader("Select a job to view potential matches")
|
| 382 |
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()]
|
|
@@ -391,22 +590,29 @@ def display_job_selection(jobs_df, candidates_df, sh):
|
|
| 391 |
key="job_selectbox"
|
| 392 |
)
|
| 393 |
|
|
|
|
| 394 |
if selected_job_index != st.session_state.last_selected_job_index:
|
| 395 |
old_job_key = st.session_state.last_selected_job_index
|
|
|
|
|
|
|
| 396 |
job_processed_key = f"job_{old_job_key}_processed_successfully"
|
| 397 |
job_is_processing_key = f"job_{old_job_key}_is_currently_processing"
|
| 398 |
|
| 399 |
-
|
| 400 |
-
st.session_state
|
| 401 |
-
|
| 402 |
-
st.session_state.pop(job_is_processing_key)
|
| 403 |
|
|
|
|
| 404 |
if 'Selected_Candidates' in st.session_state and old_job_key in st.session_state.Selected_Candidates:
|
| 405 |
-
st.session_state.Selected_Candidates
|
| 406 |
|
| 407 |
-
|
| 408 |
-
st.session_state.stop_processing_flag = False
|
| 409 |
st.cache_data.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
st.rerun()
|
| 411 |
|
| 412 |
job_row = jobs_df.iloc[selected_job_index]
|
|
@@ -454,7 +660,6 @@ def display_job_selection(jobs_df, candidates_df, sh):
|
|
| 454 |
st.session_state[job_is_processing_key] = True
|
| 455 |
st.session_state.stop_processing_flag = False
|
| 456 |
st.session_state.Selected_Candidates[selected_job_index] = []
|
| 457 |
-
st.session_state[job_processed_key] = False
|
| 458 |
st.rerun()
|
| 459 |
with col_stop:
|
| 460 |
if st.session_state[job_is_processing_key]:
|
|
@@ -510,10 +715,6 @@ def display_job_selection(jobs_df, candidates_df, sh):
|
|
| 510 |
except: cand['Fit Score'] = 0.0
|
| 511 |
final_candidates.append(cand)
|
| 512 |
final_candidates.sort(key=lambda x: x.get('Fit Score',0.0), reverse=True)
|
| 513 |
-
|
| 514 |
-
if not st.session_state[job_processed_key]:
|
| 515 |
-
st.info(f"Displaying: '{sheet_name}'.")
|
| 516 |
-
time.sleep(10)
|
| 517 |
|
| 518 |
if should_display:
|
| 519 |
col_title, col_copyall = st.columns([3,1])
|
|
|
|
| 377 |
st.error(f"Error processing files or data: {e}")
|
| 378 |
st.divider()
|
| 379 |
|
| 380 |
+
# def display_job_selection(jobs_df, candidates_df, sh):
|
| 381 |
+
# st.subheader("Select a job to view potential matches")
|
| 382 |
+
# job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()]
|
| 383 |
+
|
| 384 |
+
# if 'last_selected_job_index' not in st.session_state:
|
| 385 |
+
# st.session_state.last_selected_job_index = 0
|
| 386 |
+
|
| 387 |
+
# selected_job_index = st.selectbox(
|
| 388 |
+
# "Jobs:",
|
| 389 |
+
# range(len(job_options)),
|
| 390 |
+
# format_func=lambda x: job_options[x],
|
| 391 |
+
# key="job_selectbox"
|
| 392 |
+
# )
|
| 393 |
+
|
| 394 |
+
# if selected_job_index != st.session_state.last_selected_job_index:
|
| 395 |
+
# old_job_key = st.session_state.last_selected_job_index
|
| 396 |
+
# job_processed_key = f"job_{old_job_key}_processed_successfully"
|
| 397 |
+
# job_is_processing_key = f"job_{old_job_key}_is_currently_processing"
|
| 398 |
+
|
| 399 |
+
# if job_processed_key in st.session_state:
|
| 400 |
+
# st.session_state.pop(job_processed_key)
|
| 401 |
+
# if job_is_processing_key in st.session_state:
|
| 402 |
+
# st.session_state.pop(job_is_processing_key)
|
| 403 |
+
|
| 404 |
+
# if 'Selected_Candidates' in st.session_state and old_job_key in st.session_state.Selected_Candidates:
|
| 405 |
+
# st.session_state.Selected_Candidates.pop(old_job_key)
|
| 406 |
+
|
| 407 |
+
# st.session_state.last_selected_job_index = selected_job_index
|
| 408 |
+
# st.session_state.stop_processing_flag = False
|
| 409 |
+
# st.cache_data.clear()
|
| 410 |
+
# st.rerun()
|
| 411 |
+
|
| 412 |
+
# job_row = jobs_df.iloc[selected_job_index]
|
| 413 |
+
# job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
| 414 |
+
|
| 415 |
+
# col_job_details_display, _ = st.columns([2, 1])
|
| 416 |
+
# with col_job_details_display:
|
| 417 |
+
# st.subheader(f"Job Details: {job_row['Role']}")
|
| 418 |
+
# job_details_dict = {
|
| 419 |
+
# "Company": job_row["Company"],
|
| 420 |
+
# "Role": job_row["Role"],
|
| 421 |
+
# "Description": job_row.get("One liner", "N/A"),
|
| 422 |
+
# "Locations": job_row.get("Locations", "N/A"),
|
| 423 |
+
# "Industry": job_row.get("Industry", "N/A"),
|
| 424 |
+
# "Tech Stack": display_tech_stack(job_row_stack)
|
| 425 |
+
# }
|
| 426 |
+
# for key, value in job_details_dict.items():
|
| 427 |
+
# st.markdown(f"**{key}:** {value}")
|
| 428 |
+
|
| 429 |
+
# job_processed_key = f"job_{selected_job_index}_processed_successfully"
|
| 430 |
+
# job_is_processing_key = f"job_{selected_job_index}_is_currently_processing"
|
| 431 |
+
# st.session_state.setdefault(job_processed_key, False)
|
| 432 |
+
# st.session_state.setdefault(job_is_processing_key, False)
|
| 433 |
+
|
| 434 |
+
# sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100]
|
| 435 |
+
# worksheet_exists = False
|
| 436 |
+
# existing_candidates_from_sheet = []
|
| 437 |
+
# try:
|
| 438 |
+
# cand_ws = sh.worksheet(sheet_name)
|
| 439 |
+
# worksheet_exists = True
|
| 440 |
+
# data = cand_ws.get_all_values()
|
| 441 |
+
# if len(data) > 1:
|
| 442 |
+
# existing_candidates_from_sheet = data
|
| 443 |
+
# except Exception:
|
| 444 |
+
# pass
|
| 445 |
+
|
| 446 |
+
# if not st.session_state[job_processed_key] or existing_candidates_from_sheet:
|
| 447 |
+
# col_find, col_stop = st.columns(2)
|
| 448 |
+
# with col_find:
|
| 449 |
+
# if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}",
|
| 450 |
+
# disabled=st.session_state[job_is_processing_key]):
|
| 451 |
+
# if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None:
|
| 452 |
+
# st.error("OpenAI API key not set or LLM not initialized.")
|
| 453 |
+
# else:
|
| 454 |
+
# st.session_state[job_is_processing_key] = True
|
| 455 |
+
# st.session_state.stop_processing_flag = False
|
| 456 |
+
# st.session_state.Selected_Candidates[selected_job_index] = []
|
| 457 |
+
# st.session_state[job_processed_key] = False
|
| 458 |
+
# st.rerun()
|
| 459 |
+
# with col_stop:
|
| 460 |
+
# if st.session_state[job_is_processing_key]:
|
| 461 |
+
# if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"):
|
| 462 |
+
# st.session_state.stop_processing_flag = True
|
| 463 |
+
# st.cache_data.clear()
|
| 464 |
+
# st.warning("Stop request sent. Processing will halt shortly.")
|
| 465 |
+
# st.rerun()
|
| 466 |
+
|
| 467 |
+
# if st.session_state[job_is_processing_key]:
|
| 468 |
+
# with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."):
|
| 469 |
+
# processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain)
|
| 470 |
+
# st.session_state[job_is_processing_key] = False
|
| 471 |
+
|
| 472 |
+
# if not st.session_state.get('stop_processing_flag', False):
|
| 473 |
+
# if processed_list:
|
| 474 |
+
# processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True)
|
| 475 |
+
# st.session_state.Selected_Candidates[selected_job_index] = processed_list
|
| 476 |
+
# st.session_state[job_processed_key] = True
|
| 477 |
+
# try:
|
| 478 |
+
# target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet(
|
| 479 |
+
# title=sheet_name, rows=max(100, len(processed_list)+10), cols=20)
|
| 480 |
+
# headers = list(processed_list[0].keys())
|
| 481 |
+
# rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list]
|
| 482 |
+
# target_ws.clear()
|
| 483 |
+
# target_ws.update('A1', rows)
|
| 484 |
+
# st.success(f"Results saved to Google Sheet: '{sheet_name}'")
|
| 485 |
+
# except Exception as e:
|
| 486 |
+
# st.error(f"Error writing to Google Sheet '{sheet_name}': {e}")
|
| 487 |
+
# else:
|
| 488 |
+
# st.info("No suitable candidates found after processing.")
|
| 489 |
+
# st.session_state.Selected_Candidates[selected_job_index] = []
|
| 490 |
+
# st.session_state[job_processed_key] = True
|
| 491 |
+
# else:
|
| 492 |
+
# st.info("Processing was stopped by user.")
|
| 493 |
+
# st.session_state[job_processed_key] = False
|
| 494 |
+
# st.session_state.Selected_Candidates[selected_job_index] = []
|
| 495 |
+
# st.session_state.pop('stop_processing_flag', None)
|
| 496 |
+
# st.rerun()
|
| 497 |
+
|
| 498 |
+
# should_display = False
|
| 499 |
+
# final_candidates = []
|
| 500 |
+
# if not st.session_state[job_is_processing_key]:
|
| 501 |
+
# if st.session_state[job_processed_key]:
|
| 502 |
+
# should_display = True
|
| 503 |
+
# final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
| 504 |
+
# elif existing_candidates_from_sheet:
|
| 505 |
+
# should_display = True
|
| 506 |
+
# headers = existing_candidates_from_sheet[0]
|
| 507 |
+
# for row in existing_candidates_from_sheet[1:]:
|
| 508 |
+
# cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))}
|
| 509 |
+
# try: cand['Fit Score'] = float(cand.get('Fit Score',0))
|
| 510 |
+
# except: cand['Fit Score'] = 0.0
|
| 511 |
+
# final_candidates.append(cand)
|
| 512 |
+
# final_candidates.sort(key=lambda x: x.get('Fit Score',0.0), reverse=True)
|
| 513 |
+
|
| 514 |
+
# if not st.session_state[job_processed_key]:
|
| 515 |
+
# st.info(f"Displaying: '{sheet_name}'.")
|
| 516 |
+
# time.sleep(10)
|
| 517 |
+
|
| 518 |
+
# if should_display:
|
| 519 |
+
# col_title, col_copyall = st.columns([3,1])
|
| 520 |
+
# with col_title:
|
| 521 |
+
# st.subheader("Selected Candidates")
|
| 522 |
+
# with col_copyall:
|
| 523 |
+
# combined_text = ""
|
| 524 |
+
# for cand in final_candidates:
|
| 525 |
+
# combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n"
|
| 526 |
+
|
| 527 |
+
# import json
|
| 528 |
+
# html = f'''
|
| 529 |
+
# <button id="copy-all-btn">π Copy All</button>
|
| 530 |
+
# <script>
|
| 531 |
+
# const combinedText = {json.dumps(combined_text)};
|
| 532 |
+
# document.getElementById("copy-all-btn").onclick = () => {{
|
| 533 |
+
# navigator.clipboard.writeText(combinedText);
|
| 534 |
+
# }};
|
| 535 |
+
# </script>
|
| 536 |
+
# '''
|
| 537 |
+
# st.components.v1.html(html, height=60)
|
| 538 |
+
|
| 539 |
+
# if st.session_state.get(job_processed_key) and (
|
| 540 |
+
# st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0):
|
| 541 |
+
# display_token_usage()
|
| 542 |
+
|
| 543 |
+
# for i, candidate in enumerate(final_candidates):
|
| 544 |
+
# score = candidate.get('Fit Score',0.0)
|
| 545 |
+
# score_display = f"{score:.3f}" if isinstance(score,(int,float)) else score
|
| 546 |
+
# exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})"
|
| 547 |
+
# with st.expander(exp_title):
|
| 548 |
+
# text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n"
|
| 549 |
+
# btn = f"copy_btn_job{selected_job_index}_cand{i}"
|
| 550 |
+
# js = f'''
|
| 551 |
+
# <script>
|
| 552 |
+
# function copyToClipboard_{btn}() {{ navigator.clipboard.writeText(`{text_copy}`); }}
|
| 553 |
+
# </script>
|
| 554 |
+
# <button onclick="copyToClipboard_{btn}()">π Copy Details</button>
|
| 555 |
+
# '''
|
| 556 |
+
# cols = st.columns([0.82,0.18])
|
| 557 |
+
# with cols[1]: st.components.v1.html(js, height=40)
|
| 558 |
+
# with cols[0]:
|
| 559 |
+
# st.markdown(f"**Summary:** {candidate.get('summary','N/A')}")
|
| 560 |
+
# st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}")
|
| 561 |
+
# st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}")
|
| 562 |
+
# st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}")
|
| 563 |
+
# st.markdown(f"**Location:** {candidate.get('Location','N/A')}")
|
| 564 |
+
# if candidate.get('LinkedIn'):
|
| 565 |
+
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
| 566 |
+
# if candidate.get('justification'):
|
| 567 |
+
# st.markdown("**Justification:**")
|
| 568 |
+
# st.info(candidate['justification'])
|
| 569 |
+
|
| 570 |
+
# if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"):
|
| 571 |
+
# st.session_state[job_processed_key] = False
|
| 572 |
+
# st.session_state.pop(job_is_processing_key, None)
|
| 573 |
+
# st.session_state.Selected_Candidates.pop(selected_job_index, None)
|
| 574 |
+
# st.cache_data.clear()
|
| 575 |
+
# try: sh.worksheet(sheet_name).clear()
|
| 576 |
+
# except: pass
|
| 577 |
+
# st.rerun()
|
| 578 |
+
|
| 579 |
def display_job_selection(jobs_df, candidates_df, sh):
|
| 580 |
st.subheader("Select a job to view potential matches")
|
| 581 |
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()]
|
|
|
|
| 590 |
key="job_selectbox"
|
| 591 |
)
|
| 592 |
|
| 593 |
+
# Clear previous job state when a new job is selected
|
| 594 |
if selected_job_index != st.session_state.last_selected_job_index:
|
| 595 |
old_job_key = st.session_state.last_selected_job_index
|
| 596 |
+
|
| 597 |
+
# Clear job-specific session state
|
| 598 |
job_processed_key = f"job_{old_job_key}_processed_successfully"
|
| 599 |
job_is_processing_key = f"job_{old_job_key}_is_currently_processing"
|
| 600 |
|
| 601 |
+
for key in [job_processed_key, job_is_processing_key, 'stop_processing_flag', 'total_input_tokens', 'total_output_tokens']:
|
| 602 |
+
if key in st.session_state:
|
| 603 |
+
del st.session_state[key]
|
|
|
|
| 604 |
|
| 605 |
+
# Clear selected candidates for the old job
|
| 606 |
if 'Selected_Candidates' in st.session_state and old_job_key in st.session_state.Selected_Candidates:
|
| 607 |
+
del st.session_state.Selected_Candidates[old_job_key]
|
| 608 |
|
| 609 |
+
# Clear cached data
|
|
|
|
| 610 |
st.cache_data.clear()
|
| 611 |
+
|
| 612 |
+
# Update last selected job index
|
| 613 |
+
st.session_state.last_selected_job_index = selected_job_index
|
| 614 |
+
|
| 615 |
+
# Force rerun to refresh UI
|
| 616 |
st.rerun()
|
| 617 |
|
| 618 |
job_row = jobs_df.iloc[selected_job_index]
|
|
|
|
| 660 |
st.session_state[job_is_processing_key] = True
|
| 661 |
st.session_state.stop_processing_flag = False
|
| 662 |
st.session_state.Selected_Candidates[selected_job_index] = []
|
|
|
|
| 663 |
st.rerun()
|
| 664 |
with col_stop:
|
| 665 |
if st.session_state[job_is_processing_key]:
|
|
|
|
| 715 |
except: cand['Fit Score'] = 0.0
|
| 716 |
final_candidates.append(cand)
|
| 717 |
final_candidates.sort(key=lambda x: x.get('Fit Score',0.0), reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
if should_display:
|
| 720 |
col_title, col_copyall = st.columns([3,1])
|