Spaces:
Running
Running
Update src/app_job_copy_1.py
Browse files- src/app_job_copy_1.py +686 -47
src/app_job_copy_1.py
CHANGED
@@ -1,3 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import json
|
@@ -22,7 +604,7 @@ st.set_page_config(
|
|
22 |
|
23 |
# Define pydantic model for structured output
|
24 |
class Shortlist(BaseModel):
|
25 |
-
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
26 |
candidate_name: str = Field(description="The name of the candidate.")
|
27 |
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
28 |
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
@@ -145,7 +727,7 @@ def setup_llm():
|
|
145 |
# Create LLM instance
|
146 |
llm = ChatOpenAI(
|
147 |
model=model_name,
|
148 |
-
temperature=0,
|
149 |
max_tokens=None,
|
150 |
timeout=None,
|
151 |
max_retries=2,
|
@@ -163,6 +745,7 @@ Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi
|
|
163 |
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
164 |
Tier3 - Unknown or unranked institutions - Lower points or reject
|
165 |
|
|
|
166 |
Startup Experience Requirement:
|
167 |
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
168 |
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
@@ -172,13 +755,17 @@ preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,B
|
|
172 |
6–7 - Weak Fit - Auto-reject
|
173 |
8.0–8.7 - Moderate Fit - Auto-reject
|
174 |
8.8–10 - STRONG Fit - Include in results
|
|
|
|
|
175 |
"""
|
176 |
|
177 |
# Create query prompt
|
178 |
query_prompt = ChatPromptTemplate.from_messages([
|
179 |
("system", system),
|
180 |
("human", """
|
181 |
-
You are an expert Recruitor
|
|
|
|
|
182 |
For this you will be provided with the follwing inputs of job and candidates:
|
183 |
Job Details
|
184 |
Company: {Company}
|
@@ -203,6 +790,7 @@ preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,B
|
|
203 |
|
204 |
Answer in the structured manner as per the schema.
|
205 |
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
|
|
206 |
"""),
|
207 |
])
|
208 |
|
@@ -260,7 +848,7 @@ def call_llm(candidate_data, job_data, llm_chain):
|
|
260 |
candidate_url: {response.candidate_url}
|
261 |
candidate_summary: {response.candidate_summary}
|
262 |
candidate_location: {response.candidate_location}
|
263 |
-
fit_score: {response.fit_score}
|
264 |
justification: {response.justification}
|
265 |
"""
|
266 |
|
@@ -348,7 +936,7 @@ def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
|
348 |
"LinkedIn": response["candidate_url"],
|
349 |
"summary": response["candidate_summary"],
|
350 |
"Location": response["candidate_location"],
|
351 |
-
"Fit Score": response[
|
352 |
"justification": response["justification"],
|
353 |
# Add back original candidate data for context
|
354 |
"Educational Background": candidate_data.get("Degree & Education", ""),
|
@@ -357,7 +945,7 @@ def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
|
357 |
}
|
358 |
|
359 |
# Add to selected candidates if score is high enough
|
360 |
-
if response["fit_score"] >= 8.
|
361 |
selected_candidates.append(response_dict)
|
362 |
st.markdown(response_dict)
|
363 |
else:
|
@@ -454,7 +1042,7 @@ def main():
|
|
454 |
|
455 |
# Now, instead of processing all jobs upfront, we'll display job selection
|
456 |
# and only process the selected job when the user chooses it
|
457 |
-
display_job_selection(jobs_df, candidates_df)
|
458 |
|
459 |
except Exception as e:
|
460 |
st.error(f"Error processing files: {e}")
|
@@ -462,14 +1050,16 @@ def main():
|
|
462 |
st.divider()
|
463 |
|
464 |
|
465 |
-
def display_job_selection(jobs_df, candidates_df):
|
466 |
-
#
|
|
|
|
|
467 |
if 'llm_chain' not in st.session_state:
|
468 |
-
st.session_state.llm_chain =
|
469 |
|
470 |
st.subheader("Select a job to view potential matches")
|
471 |
|
472 |
-
# Create job options
|
473 |
job_options = []
|
474 |
for i, row in jobs_df.iterrows():
|
475 |
job_options.append(f"{row['Role']} at {row['Company']}")
|
@@ -508,6 +1098,25 @@ def display_job_selection(jobs_df, candidates_df):
|
|
508 |
if job_key not in st.session_state:
|
509 |
st.session_state[job_key] = False
|
510 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
# Add a process button for this job
|
512 |
if not st.session_state[job_key]:
|
513 |
if st.button(f"Find Matching Candidates for this Job"):
|
@@ -515,65 +1124,95 @@ def display_job_selection(jobs_df, candidates_df):
|
|
515 |
st.error("Please enter your OpenAI API key in the sidebar before processing")
|
516 |
else:
|
517 |
# Process candidates for this job (only when requested)
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
|
|
|
|
523 |
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
# Display selected candidates if already processed
|
538 |
-
if st.session_state[job_key]
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
# Display selected candidates
|
542 |
st.subheader("Selected Candidates")
|
543 |
|
544 |
-
# Display token usage statistics (
|
545 |
-
if 'total_input_tokens' in st.session_state and 'total_output_tokens' in st.session_state:
|
546 |
display_token_usage()
|
547 |
|
548 |
if len(selected_candidates) > 0:
|
549 |
for i, candidate in enumerate(selected_candidates):
|
550 |
-
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate
|
551 |
col1, col2 = st.columns([3, 1])
|
552 |
|
553 |
with col1:
|
554 |
-
st.markdown(f"**Summary:** {candidate
|
555 |
-
st.markdown(f"**Current:** {candidate
|
556 |
-
st.markdown(f"**Education:** {candidate
|
557 |
-
st.markdown(f"**Experience:** {candidate
|
558 |
-
st.markdown(f"**Location:** {candidate
|
559 |
-
|
|
|
560 |
|
561 |
with col2:
|
562 |
-
|
|
|
563 |
|
564 |
-
|
565 |
-
|
|
|
566 |
else:
|
567 |
-
st.info("No candidates
|
568 |
-
|
569 |
-
# We don't show tech-matched candidates here since they are generated
|
570 |
-
# during the LLM matching process now
|
571 |
|
572 |
# Add a reset button to start over
|
573 |
if st.button("Reset and Process Again"):
|
574 |
-
#
|
575 |
st.session_state[job_key] = False
|
|
|
|
|
576 |
st.rerun()
|
577 |
|
|
|
578 |
if __name__ == "__main__":
|
579 |
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# import json
|
4 |
+
# import os
|
5 |
+
# from pydantic import BaseModel, Field
|
6 |
+
# from typing import List, Set, Dict, Any, Optional
|
7 |
+
# import time
|
8 |
+
# from langchain_openai import ChatOpenAI
|
9 |
+
# from langchain_core.messages import HumanMessage
|
10 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
# from langchain_core.output_parsers import StrOutputParser
|
12 |
+
# from langchain_core.prompts import PromptTemplate
|
13 |
+
# import gspread
|
14 |
+
# from google.oauth2 import service_account
|
15 |
+
# import tiktoken
|
16 |
+
|
17 |
+
# st.set_page_config(
|
18 |
+
# page_title="Candidate Matching App",
|
19 |
+
# page_icon="👨💻🎯",
|
20 |
+
# layout="wide"
|
21 |
+
# )
|
22 |
+
|
23 |
+
# # Define pydantic model for structured output
|
24 |
+
# class Shortlist(BaseModel):
|
25 |
+
# fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements.")
|
26 |
+
# candidate_name: str = Field(description="The name of the candidate.")
|
27 |
+
# candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
28 |
+
# candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
29 |
+
# candidate_location: str = Field(description="The location of the candidate.")
|
30 |
+
# justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
|
31 |
+
|
32 |
+
# # Function to calculate tokens
|
33 |
+
# def calculate_tokens(text, model="gpt-4o-mini"):
|
34 |
+
# """Calculate the number of tokens in a given text for a specific model"""
|
35 |
+
# try:
|
36 |
+
# # Get the encoding for the model
|
37 |
+
# if "gpt-4" in model:
|
38 |
+
# encoding = tiktoken.encoding_for_model("gpt-4o-mini")
|
39 |
+
# elif "gpt-3.5" in model:
|
40 |
+
# encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
41 |
+
# else:
|
42 |
+
# encoding = tiktoken.get_encoding("cl100k_base") # Default for newer models
|
43 |
+
|
44 |
+
# # Encode the text and return the token count
|
45 |
+
# return len(encoding.encode(text))
|
46 |
+
# except Exception as e:
|
47 |
+
# # If there's an error, make a rough estimate (1 token ≈ 4 chars)
|
48 |
+
# return len(text) // 4
|
49 |
+
|
50 |
+
# # Function to display token usage
|
51 |
+
# def display_token_usage():
|
52 |
+
# """Display token usage statistics"""
|
53 |
+
# if 'total_input_tokens' not in st.session_state:
|
54 |
+
# st.session_state.total_input_tokens = 0
|
55 |
+
# if 'total_output_tokens' not in st.session_state:
|
56 |
+
# st.session_state.total_output_tokens = 0
|
57 |
+
|
58 |
+
# total_input = st.session_state.total_input_tokens
|
59 |
+
# total_output = st.session_state.total_output_tokens
|
60 |
+
# total_tokens = total_input + total_output
|
61 |
+
|
62 |
+
# # Estimate cost based on model
|
63 |
+
# if st.session_state.model_name == "gpt-4o-mini":
|
64 |
+
# input_cost_per_1k = 0.0003 # $0.0003 per 1K input tokens
|
65 |
+
# output_cost_per_1k = 0.0006 # $$0.0006 per 1K output tokens
|
66 |
+
# elif "gpt-4" in st.session_state.model_name:
|
67 |
+
# input_cost_per_1k = 0.005 # $0.30 per 1K input tokens
|
68 |
+
# output_cost_per_1k = 0.60 # $0.60 per 1K output tokens
|
69 |
+
# else: # Assume gpt-3.5-turbo pricing
|
70 |
+
# input_cost_per_1k = 0.0015 # $0.0015 per 1K input tokens
|
71 |
+
# output_cost_per_1k = 0.015 # $0.002 per 1K output tokens
|
72 |
+
|
73 |
+
# estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k)
|
74 |
+
|
75 |
+
# st.subheader("📊 Token Usage Statistics")
|
76 |
+
|
77 |
+
# col1, col2, col3 = st.columns(3)
|
78 |
+
|
79 |
+
# with col1:
|
80 |
+
# st.metric("Input Tokens", f"{total_input:,}")
|
81 |
+
|
82 |
+
# with col2:
|
83 |
+
# st.metric("Output Tokens", f"{total_output:,}")
|
84 |
+
|
85 |
+
# with col3:
|
86 |
+
# st.metric("Total Tokens", f"{total_tokens:,}")
|
87 |
+
|
88 |
+
# st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}")
|
89 |
+
|
90 |
+
# return total_tokens
|
91 |
+
|
92 |
+
# # Function to parse and normalize tech stacks
|
93 |
+
# def parse_tech_stack(stack):
|
94 |
+
# if pd.isna(stack) or stack == "" or stack is None:
|
95 |
+
# return set()
|
96 |
+
# if isinstance(stack, set):
|
97 |
+
# return stack
|
98 |
+
# try:
|
99 |
+
# # Handle potential string representation of sets
|
100 |
+
# if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
|
101 |
+
# # This could be a string representation of a set
|
102 |
+
# items = stack.strip("{}").split(",")
|
103 |
+
# return set(item.strip().strip("'\"") for item in items if item.strip())
|
104 |
+
# return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
|
105 |
+
# except Exception as e:
|
106 |
+
# st.error(f"Error parsing tech stack: {e}")
|
107 |
+
# return set()
|
108 |
+
|
109 |
+
# def display_tech_stack(stack_set):
|
110 |
+
# if isinstance(stack_set, set):
|
111 |
+
# return ", ".join(sorted(stack_set))
|
112 |
+
# return str(stack_set)
|
113 |
+
|
114 |
+
# def get_matching_candidates(job_stack, candidates_df):
|
115 |
+
# """Find candidates with matching tech stack for a specific job"""
|
116 |
+
# matched = []
|
117 |
+
# job_stack_set = parse_tech_stack(job_stack)
|
118 |
+
|
119 |
+
# for _, candidate in candidates_df.iterrows():
|
120 |
+
# candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
|
121 |
+
# common = job_stack_set & candidate_stack
|
122 |
+
# if len(common) >= 2:
|
123 |
+
# matched.append({
|
124 |
+
# "Name": candidate["Full Name"],
|
125 |
+
# "URL": candidate["LinkedIn URL"],
|
126 |
+
# "Degree & Education": candidate["Degree & University"],
|
127 |
+
# "Years of Experience": candidate["Years of Experience"],
|
128 |
+
# "Current Title & Company": candidate['Current Title & Company'],
|
129 |
+
# "Key Highlights": candidate["Key Highlights"],
|
130 |
+
# "Location": candidate["Location (from most recent experience)"],
|
131 |
+
# "Experience": str(candidate["Experience"]),
|
132 |
+
# "Tech Stack": candidate_stack
|
133 |
+
# })
|
134 |
+
# return matched
|
135 |
+
|
136 |
+
# def setup_llm():
|
137 |
+
# """Set up the LangChain LLM with structured output"""
|
138 |
+
# # Define the model to use
|
139 |
+
# model_name = "gpt-4o-mini"
|
140 |
+
|
141 |
+
# # Store model name in session state for token calculation
|
142 |
+
# if 'model_name' not in st.session_state:
|
143 |
+
# st.session_state.model_name = model_name
|
144 |
+
|
145 |
+
# # Create LLM instance
|
146 |
+
# llm = ChatOpenAI(
|
147 |
+
# model=model_name,
|
148 |
+
# temperature=0,
|
149 |
+
# max_tokens=None,
|
150 |
+
# timeout=None,
|
151 |
+
# max_retries=2,
|
152 |
+
# )
|
153 |
+
|
154 |
+
# # Create structured output
|
155 |
+
# sum_llm = llm.with_structured_output(Shortlist)
|
156 |
+
|
157 |
+
# # Create system prompt
|
158 |
+
# system = """You are an expert Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the
|
159 |
+
# the profile is according to job.
|
160 |
+
# Try to ensure following points while estimating the candidate's fit score:
|
161 |
+
# For education:
|
162 |
+
# Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points
|
163 |
+
# Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
164 |
+
# Tier3 - Unknown or unranked institutions - Lower points or reject
|
165 |
+
|
166 |
+
# Startup Experience Requirement:
|
167 |
+
# Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
168 |
+
# preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
169 |
+
|
170 |
+
# The fit score signifies based on following metrics:
|
171 |
+
# 1–5 - Poor Fit - Auto-reject
|
172 |
+
# 6–7 - Weak Fit - Auto-reject
|
173 |
+
# 8.0–8.7 - Moderate Fit - Auto-reject
|
174 |
+
# 8.8–10 - STRONG Fit - Include in results
|
175 |
+
# """
|
176 |
+
|
177 |
+
# # Create query prompt
|
178 |
+
# query_prompt = ChatPromptTemplate.from_messages([
|
179 |
+
# ("system", system),
|
180 |
+
# ("human", """
|
181 |
+
# You are an expert Recruitor, your task is to determine if the user is a correct match for the given job or not.
|
182 |
+
# For this you will be provided with the follwing inputs of job and candidates:
|
183 |
+
# Job Details
|
184 |
+
# Company: {Company}
|
185 |
+
# Role: {Role}
|
186 |
+
# About Company: {desc}
|
187 |
+
# Locations: {Locations}
|
188 |
+
# Tech Stack: {Tech_Stack}
|
189 |
+
# Industry: {Industry}
|
190 |
+
|
191 |
+
|
192 |
+
# Candidate Details:
|
193 |
+
# Full Name: {Full_Name}
|
194 |
+
# LinkedIn URL: {LinkedIn_URL}
|
195 |
+
# Current Title & Company: {Current_Title_Company}
|
196 |
+
# Years of Experience: {Years_of_Experience}
|
197 |
+
# Degree & University: {Degree_University}
|
198 |
+
# Key Tech Stack: {Key_Tech_Stack}
|
199 |
+
# Key Highlights: {Key_Highlights}
|
200 |
+
# Location (from most recent experience): {cand_Location}
|
201 |
+
# Past_Experience: {Experience}
|
202 |
+
|
203 |
+
|
204 |
+
# Answer in the structured manner as per the schema.
|
205 |
+
# If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
206 |
+
# """),
|
207 |
+
# ])
|
208 |
+
|
209 |
+
# # Chain the prompt and LLM
|
210 |
+
# cat_class = query_prompt | sum_llm
|
211 |
+
|
212 |
+
# return cat_class
|
213 |
+
|
214 |
+
# def call_llm(candidate_data, job_data, llm_chain):
|
215 |
+
# """Call the actual LLM to evaluate the candidate"""
|
216 |
+
# try:
|
217 |
+
# # Convert tech stacks to strings for the LLM payload
|
218 |
+
# job_tech_stack = job_data.get("Tech_Stack", set())
|
219 |
+
# candidate_tech_stack = candidate_data.get("Tech Stack", set())
|
220 |
+
|
221 |
+
# if isinstance(job_tech_stack, set):
|
222 |
+
# job_tech_stack = ", ".join(sorted(job_tech_stack))
|
223 |
+
|
224 |
+
# if isinstance(candidate_tech_stack, set):
|
225 |
+
# candidate_tech_stack = ", ".join(sorted(candidate_tech_stack))
|
226 |
+
|
227 |
+
# # Prepare payload for LLM
|
228 |
+
# payload = {
|
229 |
+
# "Company": job_data.get("Company", ""),
|
230 |
+
# "Role": job_data.get("Role", ""),
|
231 |
+
# "desc": job_data.get("desc", ""),
|
232 |
+
# "Locations": job_data.get("Locations", ""),
|
233 |
+
# "Tech_Stack": job_tech_stack,
|
234 |
+
# "Industry": job_data.get("Industry", ""),
|
235 |
+
|
236 |
+
# "Full_Name": candidate_data.get("Name", ""),
|
237 |
+
# "LinkedIn_URL": candidate_data.get("URL", ""),
|
238 |
+
# "Current_Title_Company": candidate_data.get("Current Title & Company", ""),
|
239 |
+
# "Years_of_Experience": candidate_data.get("Years of Experience", ""),
|
240 |
+
# "Degree_University": candidate_data.get("Degree & Education", ""),
|
241 |
+
# "Key_Tech_Stack": candidate_tech_stack,
|
242 |
+
# "Key_Highlights": candidate_data.get("Key Highlights", ""),
|
243 |
+
# "cand_Location": candidate_data.get("Location", ""),
|
244 |
+
# "Experience": candidate_data.get("Experience", "")
|
245 |
+
# }
|
246 |
+
|
247 |
+
# # Convert payload to a string for token calculation
|
248 |
+
# payload_str = json.dumps(payload)
|
249 |
+
|
250 |
+
# # Calculate input tokens
|
251 |
+
# input_tokens = calculate_tokens(payload_str, st.session_state.model_name)
|
252 |
+
|
253 |
+
# # Call LLM
|
254 |
+
# response = llm_chain.invoke(payload)
|
255 |
+
# print(candidate_data.get("Experience", ""))
|
256 |
+
|
257 |
+
# # Convert response to string for token calculation
|
258 |
+
# response_str = f"""
|
259 |
+
# candidate_name: {response.candidate_name}
|
260 |
+
# candidate_url: {response.candidate_url}
|
261 |
+
# candidate_summary: {response.candidate_summary}
|
262 |
+
# candidate_location: {response.candidate_location}
|
263 |
+
# fit_score: {response.fit_score}
|
264 |
+
# justification: {response.justification}
|
265 |
+
# """
|
266 |
+
|
267 |
+
# # Calculate output tokens
|
268 |
+
# output_tokens = calculate_tokens(response_str, st.session_state.model_name)
|
269 |
+
|
270 |
+
# # Update token counts in session state
|
271 |
+
# if 'total_input_tokens' not in st.session_state:
|
272 |
+
# st.session_state.total_input_tokens = 0
|
273 |
+
# if 'total_output_tokens' not in st.session_state:
|
274 |
+
# st.session_state.total_output_tokens = 0
|
275 |
+
|
276 |
+
# st.session_state.total_input_tokens += input_tokens
|
277 |
+
# st.session_state.total_output_tokens += output_tokens
|
278 |
+
|
279 |
+
# # Return response in expected format
|
280 |
+
# return {
|
281 |
+
# "candidate_name": response.candidate_name,
|
282 |
+
# "candidate_url": response.candidate_url,
|
283 |
+
# "candidate_summary": response.candidate_summary,
|
284 |
+
# "candidate_location": response.candidate_location,
|
285 |
+
# "fit_score": response.fit_score,
|
286 |
+
# "justification": response.justification
|
287 |
+
# }
|
288 |
+
# except Exception as e:
|
289 |
+
# st.error(f"Error calling LLM: {e}")
|
290 |
+
# # Fallback to a default response
|
291 |
+
# return {
|
292 |
+
# "candidate_name": candidate_data.get("Name", "Unknown"),
|
293 |
+
# "candidate_url": candidate_data.get("URL", ""),
|
294 |
+
# "candidate_summary": "Error processing candidate profile",
|
295 |
+
# "candidate_location": candidate_data.get("Location", "Unknown"),
|
296 |
+
# "fit_score": 0.0,
|
297 |
+
# "justification": f"Error in LLM processing: {str(e)}"
|
298 |
+
# }
|
299 |
+
|
300 |
+
# def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
|
301 |
+
# """Process candidates for a specific job using the LLM"""
|
302 |
+
# # Reset token counters for this job
|
303 |
+
# st.session_state.total_input_tokens = 0
|
304 |
+
# st.session_state.total_output_tokens = 0
|
305 |
+
|
306 |
+
# if llm_chain is None:
|
307 |
+
# with st.spinner("Setting up LLM..."):
|
308 |
+
# llm_chain = setup_llm()
|
309 |
+
|
310 |
+
# selected_candidates = []
|
311 |
+
|
312 |
+
# try:
|
313 |
+
# # Get job-specific data
|
314 |
+
# job_data = {
|
315 |
+
# "Company": job_row["Company"],
|
316 |
+
# "Role": job_row["Role"],
|
317 |
+
# "desc": job_row.get("One liner", ""),
|
318 |
+
# "Locations": job_row.get("Locations", ""),
|
319 |
+
# "Tech_Stack": job_row["Tech Stack"],
|
320 |
+
# "Industry": job_row.get("Industry", "")
|
321 |
+
# }
|
322 |
+
|
323 |
+
# # Find matching candidates for this job
|
324 |
+
# with st.spinner("Finding matching candidates based on tech stack..."):
|
325 |
+
# matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
|
326 |
+
|
327 |
+
# if not matching_candidates:
|
328 |
+
# st.warning("No candidates with matching tech stack found for this job.")
|
329 |
+
# return []
|
330 |
+
|
331 |
+
# st.success(f"Found {len(matching_candidates)} candidates with matching tech stack.")
|
332 |
+
|
333 |
+
# # Create progress elements
|
334 |
+
# candidates_progress = st.progress(0)
|
335 |
+
# candidate_status = st.empty()
|
336 |
+
|
337 |
+
# # Process each candidate
|
338 |
+
# for i, candidate_data in enumerate(matching_candidates):
|
339 |
+
# # Update progress
|
340 |
+
# candidates_progress.progress((i + 1) / len(matching_candidates))
|
341 |
+
# candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
|
342 |
+
|
343 |
+
# # Process the candidate with the LLM
|
344 |
+
# response = call_llm(candidate_data, job_data, llm_chain)
|
345 |
+
|
346 |
+
# response_dict = {
|
347 |
+
# "Name": response["candidate_name"],
|
348 |
+
# "LinkedIn": response["candidate_url"],
|
349 |
+
# "summary": response["candidate_summary"],
|
350 |
+
# "Location": response["candidate_location"],
|
351 |
+
# "Fit Score": response["fit_score"],
|
352 |
+
# "justification": response["justification"],
|
353 |
+
# # Add back original candidate data for context
|
354 |
+
# "Educational Background": candidate_data.get("Degree & Education", ""),
|
355 |
+
# "Years of Experience": candidate_data.get("Years of Experience", ""),
|
356 |
+
# "Current Title & Company": candidate_data.get("Current Title & Company", "")
|
357 |
+
# }
|
358 |
+
|
359 |
+
# # Add to selected candidates if score is high enough
|
360 |
+
# if response["fit_score"] >= 8.8:
|
361 |
+
# selected_candidates.append(response_dict)
|
362 |
+
# st.markdown(response_dict)
|
363 |
+
# else:
|
364 |
+
# st.write(f"Rejected candidate: {response_dict['Name']} with score: {response['fit_score']}")
|
365 |
+
|
366 |
+
# # Clear progress indicators
|
367 |
+
# candidates_progress.empty()
|
368 |
+
# candidate_status.empty()
|
369 |
+
|
370 |
+
# # Show results
|
371 |
+
# if selected_candidates:
|
372 |
+
# st.success(f"✅ Found {len(selected_candidates)} suitable candidates for this job!")
|
373 |
+
# else:
|
374 |
+
# st.info("No candidates met the minimum fit score threshold for this job.")
|
375 |
+
|
376 |
+
# # Token usage is now displayed in display_job_selection when showing results
|
377 |
+
# return selected_candidates
|
378 |
+
|
379 |
+
# except Exception as e:
|
380 |
+
# st.error(f"Error processing job: {e}")
|
381 |
+
# return []
|
382 |
+
|
383 |
+
# def main():
|
384 |
+
# st.title("👨💻 Candidate Matching App")
|
385 |
+
|
386 |
+
# # Initialize session state
|
387 |
+
# if 'processed_jobs' not in st.session_state:
|
388 |
+
# st.session_state.processed_jobs = {}
|
389 |
+
|
390 |
+
# st.write("""
|
391 |
+
# This app matches job listings with candidate profiles based on tech stack and other criteria.
|
392 |
+
# Select a job to find matching candidates.
|
393 |
+
# """)
|
394 |
+
|
395 |
+
# # API Key input
|
396 |
+
# with st.sidebar:
|
397 |
+
# st.header("API Configuration")
|
398 |
+
# api_key = st.text_input("Enter OpenAI API Key", type="password")
|
399 |
+
# if api_key:
|
400 |
+
# os.environ["OPENAI_API_KEY"] = api_key
|
401 |
+
# st.success("API Key set!")
|
402 |
+
# else:
|
403 |
+
# st.warning("Please enter OpenAI API Key to use LLM features")
|
404 |
+
|
405 |
+
# # Show API key warning if not set
|
406 |
+
# SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json'
|
407 |
+
# SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
408 |
+
# creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
|
409 |
+
# gc = gspread.authorize(creds)
|
410 |
+
# job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
|
411 |
+
# candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
|
412 |
+
|
413 |
+
# if not api_key:
|
414 |
+
# st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
|
415 |
+
|
416 |
+
# if api_key:
|
417 |
+
# try:
|
418 |
+
# # Load data from Google Sheets
|
419 |
+
# job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
|
420 |
+
# job_data = job_worksheet.get_all_values()
|
421 |
+
# candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
|
422 |
+
# candidate_data = candidate_worksheet.get_all_values()
|
423 |
+
|
424 |
+
# # Convert to DataFrames
|
425 |
+
# jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0])
|
426 |
+
# candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0])
|
427 |
+
# candidates_df = candidates_df.fillna("Unknown")
|
428 |
+
|
429 |
+
# # Display data preview
|
430 |
+
# with st.expander("Preview uploaded data"):
|
431 |
+
# st.subheader("Jobs Data Preview")
|
432 |
+
# st.dataframe(jobs_df.head(3))
|
433 |
+
|
434 |
+
# st.subheader("Candidates Data Preview")
|
435 |
+
# st.dataframe(candidates_df.head(3))
|
436 |
+
|
437 |
+
# # Map column names if needed
|
438 |
+
# column_mapping = {
|
439 |
+
# "Full Name": "Full Name",
|
440 |
+
# "LinkedIn URL": "LinkedIn URL",
|
441 |
+
# "Current Title & Company": "Current Title & Company",
|
442 |
+
# "Years of Experience": "Years of Experience",
|
443 |
+
# "Degree & University": "Degree & University",
|
444 |
+
# "Key Tech Stack": "Key Tech Stack",
|
445 |
+
# "Key Highlights": "Key Highlights",
|
446 |
+
# "Location (from most recent experience)": "Location (from most recent experience)"
|
447 |
+
# }
|
448 |
+
|
449 |
+
# # Rename columns if they don't match expected
|
450 |
+
# candidates_df = candidates_df.rename(columns={
|
451 |
+
# col: mapping for col, mapping in column_mapping.items()
|
452 |
+
# if col in candidates_df.columns and col != mapping
|
453 |
+
# })
|
454 |
+
|
455 |
+
# # Now, instead of processing all jobs upfront, we'll display job selection
|
456 |
+
# # and only process the selected job when the user chooses it
|
457 |
+
# display_job_selection(jobs_df, candidates_df)
|
458 |
+
|
459 |
+
# except Exception as e:
|
460 |
+
# st.error(f"Error processing files: {e}")
|
461 |
+
|
462 |
+
# st.divider()
|
463 |
+
|
464 |
+
|
465 |
+
# def display_job_selection(jobs_df, candidates_df):
|
466 |
+
# # Store the LLM chain as a session state to avoid recreating it
|
467 |
+
# if 'llm_chain' not in st.session_state:
|
468 |
+
# st.session_state.llm_chain = None
|
469 |
+
|
470 |
+
# st.subheader("Select a job to view potential matches")
|
471 |
+
|
472 |
+
# # Create job options - but don't compute matches yet
|
473 |
+
# job_options = []
|
474 |
+
# for i, row in jobs_df.iterrows():
|
475 |
+
# job_options.append(f"{row['Role']} at {row['Company']}")
|
476 |
+
|
477 |
+
# if job_options:
|
478 |
+
# selected_job_index = st.selectbox("Jobs:",
|
479 |
+
# range(len(job_options)),
|
480 |
+
# format_func=lambda x: job_options[x])
|
481 |
+
|
482 |
+
# # Display job details
|
483 |
+
# job_row = jobs_df.iloc[selected_job_index]
|
484 |
+
|
485 |
+
# # Parse tech stack for display
|
486 |
+
# job_row_stack = parse_tech_stack(job_row["Tech Stack"])
|
487 |
+
|
488 |
+
# col1, col2 = st.columns([2, 1])
|
489 |
+
|
490 |
+
# with col1:
|
491 |
+
# st.subheader(f"Job Details: {job_row['Role']}")
|
492 |
+
|
493 |
+
# job_details = {
|
494 |
+
# "Company": job_row["Company"],
|
495 |
+
# "Role": job_row["Role"],
|
496 |
+
# "Description": job_row.get("One liner", "N/A"),
|
497 |
+
# "Locations": job_row.get("Locations", "N/A"),
|
498 |
+
# "Industry": job_row.get("Industry", "N/A"),
|
499 |
+
# "Tech Stack": display_tech_stack(job_row_stack)
|
500 |
+
# }
|
501 |
+
|
502 |
+
# for key, value in job_details.items():
|
503 |
+
# st.markdown(f"**{key}:** {value}")
|
504 |
+
|
505 |
+
# # Create a key for this job in session state
|
506 |
+
# job_key = f"job_{selected_job_index}_processed"
|
507 |
+
|
508 |
+
# if job_key not in st.session_state:
|
509 |
+
# st.session_state[job_key] = False
|
510 |
+
|
511 |
+
# # Add a process button for this job
|
512 |
+
# if not st.session_state[job_key]:
|
513 |
+
# if st.button(f"Find Matching Candidates for this Job"):
|
514 |
+
# if "OPENAI_API_KEY" not in os.environ or not os.environ["OPENAI_API_KEY"]:
|
515 |
+
# st.error("Please enter your OpenAI API key in the sidebar before processing")
|
516 |
+
# else:
|
517 |
+
# # Process candidates for this job (only when requested)
|
518 |
+
# selected_candidates = process_candidates_for_job(
|
519 |
+
# job_row,
|
520 |
+
# candidates_df,
|
521 |
+
# st.session_state.llm_chain
|
522 |
+
# )
|
523 |
+
|
524 |
+
# # Store the results and set as processed
|
525 |
+
# if 'Selected_Candidates' not in st.session_state:
|
526 |
+
# st.session_state.Selected_Candidates = {}
|
527 |
+
# st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
528 |
+
# st.session_state[job_key] = True
|
529 |
+
|
530 |
+
# # Store the LLM chain for reuse
|
531 |
+
# if st.session_state.llm_chain is None:
|
532 |
+
# st.session_state.llm_chain = setup_llm()
|
533 |
+
|
534 |
+
# # Force refresh
|
535 |
+
# st.rerun()
|
536 |
+
|
537 |
+
# # Display selected candidates if already processed
|
538 |
+
# if st.session_state[job_key] and 'Selected_Candidates' in st.session_state:
|
539 |
+
# selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
540 |
+
|
541 |
+
# # Display selected candidates
|
542 |
+
# st.subheader("Selected Candidates")
|
543 |
+
|
544 |
+
# # Display token usage statistics (will persist until job is changed)
|
545 |
+
# if 'total_input_tokens' in st.session_state and 'total_output_tokens' in st.session_state:
|
546 |
+
# display_token_usage()
|
547 |
+
|
548 |
+
# if len(selected_candidates) > 0:
|
549 |
+
# for i, candidate in enumerate(selected_candidates):
|
550 |
+
# with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate['Fit Score']})"):
|
551 |
+
# col1, col2 = st.columns([3, 1])
|
552 |
+
|
553 |
+
# with col1:
|
554 |
+
# st.markdown(f"**Summary:** {candidate['summary']}")
|
555 |
+
# st.markdown(f"**Current:** {candidate['Current Title & Company']}")
|
556 |
+
# st.markdown(f"**Education:** {candidate['Educational Background']}")
|
557 |
+
# st.markdown(f"**Experience:** {candidate['Years of Experience']}")
|
558 |
+
# st.markdown(f"**Location:** {candidate['Location']}")
|
559 |
+
# st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
560 |
+
|
561 |
+
# with col2:
|
562 |
+
# st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
563 |
+
|
564 |
+
# st.markdown("**Justification:**")
|
565 |
+
# st.info(candidate['justification'])
|
566 |
+
# else:
|
567 |
+
# st.info("No candidates met the minimum score threshold (8.8) for this job.")
|
568 |
+
|
569 |
+
# # We don't show tech-matched candidates here since they are generated
|
570 |
+
# # during the LLM matching process now
|
571 |
+
|
572 |
+
# # Add a reset button to start over
|
573 |
+
# if st.button("Reset and Process Again"):
|
574 |
+
# # Don't reset token counters here - we want them to persist
|
575 |
+
# st.session_state[job_key] = False
|
576 |
+
# st.rerun()
|
577 |
+
|
578 |
+
# if __name__ == "__main__":
|
579 |
+
# main()
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
import streamlit as st
|
584 |
import pandas as pd
|
585 |
import json
|
|
|
604 |
|
605 |
# Define pydantic model for structured output
|
606 |
class Shortlist(BaseModel):
|
607 |
+
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.")
|
608 |
candidate_name: str = Field(description="The name of the candidate.")
|
609 |
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
|
610 |
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
|
|
|
727 |
# Create LLM instance
|
728 |
llm = ChatOpenAI(
|
729 |
model=model_name,
|
730 |
+
temperature=0.3,
|
731 |
max_tokens=None,
|
732 |
timeout=None,
|
733 |
max_retries=2,
|
|
|
745 |
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points
|
746 |
Tier3 - Unknown or unranked institutions - Lower points or reject
|
747 |
|
748 |
+
|
749 |
Startup Experience Requirement:
|
750 |
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D)
|
751 |
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc.
|
|
|
755 |
6–7 - Weak Fit - Auto-reject
|
756 |
8.0–8.7 - Moderate Fit - Auto-reject
|
757 |
8.8–10 - STRONG Fit - Include in results
|
758 |
+
|
759 |
+
Each candidate's fit score should be calculated based on a weighted evaluation of their background and **must be distinct even if candidates have similar profiles**. You may use slight variations to reflect nuanced differences.
|
760 |
"""
|
761 |
|
762 |
# Create query prompt
|
763 |
query_prompt = ChatPromptTemplate.from_messages([
|
764 |
("system", system),
|
765 |
("human", """
|
766 |
+
You are an expert Recruitor. Your task is to determine if the candidate matches the given job.
|
767 |
+
Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.).
|
768 |
+
Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score.
|
769 |
For this you will be provided with the follwing inputs of job and candidates:
|
770 |
Job Details
|
771 |
Company: {Company}
|
|
|
790 |
|
791 |
Answer in the structured manner as per the schema.
|
792 |
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
|
793 |
+
The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals.
|
794 |
"""),
|
795 |
])
|
796 |
|
|
|
848 |
candidate_url: {response.candidate_url}
|
849 |
candidate_summary: {response.candidate_summary}
|
850 |
candidate_location: {response.candidate_location}
|
851 |
+
fit_score: {float(f"{response.fit_score:.3f}")}
|
852 |
justification: {response.justification}
|
853 |
"""
|
854 |
|
|
|
936 |
"LinkedIn": response["candidate_url"],
|
937 |
"summary": response["candidate_summary"],
|
938 |
"Location": response["candidate_location"],
|
939 |
+
"Fit Score": float(f"{response['fit_score']:.3f}"),
|
940 |
"justification": response["justification"],
|
941 |
# Add back original candidate data for context
|
942 |
"Educational Background": candidate_data.get("Degree & Education", ""),
|
|
|
945 |
}
|
946 |
|
947 |
# Add to selected candidates if score is high enough
|
948 |
+
if response["fit_score"] >= 8.800:
|
949 |
selected_candidates.append(response_dict)
|
950 |
st.markdown(response_dict)
|
951 |
else:
|
|
|
1042 |
|
1043 |
# Now, instead of processing all jobs upfront, we'll display job selection
|
1044 |
# and only process the selected job when the user chooses it
|
1045 |
+
display_job_selection(jobs_df, candidates_df, job_sheet)
|
1046 |
|
1047 |
except Exception as e:
|
1048 |
st.error(f"Error processing files: {e}")
|
|
|
1050 |
st.divider()
|
1051 |
|
1052 |
|
1053 |
+
def display_job_selection(jobs_df, candidates_df, sh):
|
1054 |
+
# Initialize session state variables if they don't exist
|
1055 |
+
if 'Selected_Candidates' not in st.session_state:
|
1056 |
+
st.session_state.Selected_Candidates = {}
|
1057 |
if 'llm_chain' not in st.session_state:
|
1058 |
+
st.session_state.llm_chain = setup_llm()
|
1059 |
|
1060 |
st.subheader("Select a job to view potential matches")
|
1061 |
|
1062 |
+
# Create job options
|
1063 |
job_options = []
|
1064 |
for i, row in jobs_df.iterrows():
|
1065 |
job_options.append(f"{row['Role']} at {row['Company']}")
|
|
|
1098 |
if job_key not in st.session_state:
|
1099 |
st.session_state[job_key] = False
|
1100 |
|
1101 |
+
# Create worksheet name
|
1102 |
+
sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100]
|
1103 |
+
|
1104 |
+
# Check if worksheet exists and has data
|
1105 |
+
worksheet_exists = False
|
1106 |
+
existing_candidates = []
|
1107 |
+
|
1108 |
+
try:
|
1109 |
+
cand_worksheet = sh.worksheet(sheet_name)
|
1110 |
+
worksheet_exists = True
|
1111 |
+
# Get existing data if worksheet exists
|
1112 |
+
existing_data = cand_worksheet.get_all_values()
|
1113 |
+
if len(existing_data) > 1: # Has data beyond header
|
1114 |
+
existing_candidates = existing_data[1:]
|
1115 |
+
st.session_state[job_key] = True
|
1116 |
+
# Don't show the info message about existing data
|
1117 |
+
except gspread.exceptions.WorksheetNotFound:
|
1118 |
+
pass
|
1119 |
+
|
1120 |
# Add a process button for this job
|
1121 |
if not st.session_state[job_key]:
|
1122 |
if st.button(f"Find Matching Candidates for this Job"):
|
|
|
1124 |
st.error("Please enter your OpenAI API key in the sidebar before processing")
|
1125 |
else:
|
1126 |
# Process candidates for this job (only when requested)
|
1127 |
+
with st.spinner("Processing candidates..."):
|
1128 |
+
selected_candidates = process_candidates_for_job(
|
1129 |
+
job_row,
|
1130 |
+
candidates_df,
|
1131 |
+
st.session_state.llm_chain
|
1132 |
+
)
|
1133 |
+
selected_candidates.sort(key=lambda x: x["Fit Score"], reverse=True)
|
1134 |
|
1135 |
+
# Only create worksheet if we have candidates
|
1136 |
+
if selected_candidates:
|
1137 |
+
try:
|
1138 |
+
if not worksheet_exists:
|
1139 |
+
cand_worksheet = sh.add_worksheet(title=sheet_name, rows=10000, cols=50)
|
1140 |
+
|
1141 |
+
# Prepare data for Google Sheet
|
1142 |
+
headers = list(selected_candidates[0].keys())
|
1143 |
+
rows = [headers] + [list(candidate.values()) for candidate in selected_candidates]
|
1144 |
+
|
1145 |
+
# Clear existing data if any
|
1146 |
+
cand_worksheet.clear()
|
1147 |
+
|
1148 |
+
# Write data to the worksheet
|
1149 |
+
cand_worksheet.update('A1', rows)
|
1150 |
+
|
1151 |
+
st.success(f"Successfully processed {len(selected_candidates)} candidates")
|
1152 |
+
except Exception as e:
|
1153 |
+
st.error(f"Error writing to Google Sheet: {e}")
|
1154 |
+
|
1155 |
+
# Store the results and set as processed
|
1156 |
+
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
1157 |
+
st.session_state[job_key] = True
|
1158 |
+
|
1159 |
+
# Force refresh
|
1160 |
+
st.rerun()
|
1161 |
|
1162 |
# Display selected candidates if already processed
|
1163 |
+
if st.session_state[job_key]:
|
1164 |
+
if existing_candidates:
|
1165 |
+
# Convert existing worksheet data to our format
|
1166 |
+
headers = existing_data[0]
|
1167 |
+
selected_candidates = []
|
1168 |
+
for row in existing_data[1:]:
|
1169 |
+
candidate = dict(zip(headers, row))
|
1170 |
+
selected_candidates.append(candidate)
|
1171 |
+
st.session_state.Selected_Candidates[selected_job_index] = selected_candidates
|
1172 |
+
elif 'Selected_Candidates' in st.session_state:
|
1173 |
+
selected_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
|
1174 |
+
else:
|
1175 |
+
selected_candidates = []
|
1176 |
|
1177 |
# Display selected candidates
|
1178 |
st.subheader("Selected Candidates")
|
1179 |
|
1180 |
+
# Display token usage statistics (only if we processed with LLM)
|
1181 |
+
if not existing_candidates and 'total_input_tokens' in st.session_state and 'total_output_tokens' in st.session_state:
|
1182 |
display_token_usage()
|
1183 |
|
1184 |
if len(selected_candidates) > 0:
|
1185 |
for i, candidate in enumerate(selected_candidates):
|
1186 |
+
with st.expander(f"{i+1}. {candidate['Name']} (Score: {candidate.get('Fit Score', 'N/A')})"):
|
1187 |
col1, col2 = st.columns([3, 1])
|
1188 |
|
1189 |
with col1:
|
1190 |
+
st.markdown(f"**Summary:** {candidate.get('summary', 'N/A')}")
|
1191 |
+
st.markdown(f"**Current:** {candidate.get('Current Title & Company', 'N/A')}")
|
1192 |
+
st.markdown(f"**Education:** {candidate.get('Educational Background', 'N/A')}")
|
1193 |
+
st.markdown(f"**Experience:** {candidate.get('Years of Experience', 'N/A')}")
|
1194 |
+
st.markdown(f"**Location:** {candidate.get('Location', 'N/A')}")
|
1195 |
+
if 'LinkedIn' in candidate:
|
1196 |
+
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
|
1197 |
|
1198 |
with col2:
|
1199 |
+
if 'Fit Score' in candidate:
|
1200 |
+
st.markdown(f"**Fit Score:** {candidate['Fit Score']}")
|
1201 |
|
1202 |
+
if 'justification' in candidate:
|
1203 |
+
st.markdown("**Justification:**")
|
1204 |
+
st.info(candidate['justification'])
|
1205 |
else:
|
1206 |
+
st.info("No candidates found for this job.")
|
|
|
|
|
|
|
1207 |
|
1208 |
# Add a reset button to start over
|
1209 |
if st.button("Reset and Process Again"):
|
1210 |
+
# Reset this job's processing state
|
1211 |
st.session_state[job_key] = False
|
1212 |
+
if 'Selected_Candidates' in st.session_state and selected_job_index in st.session_state.Selected_Candidates:
|
1213 |
+
del st.session_state.Selected_Candidates[selected_job_index]
|
1214 |
st.rerun()
|
1215 |
|
1216 |
+
|
1217 |
if __name__ == "__main__":
|
1218 |
main()
|