Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import random | |
import traceback # Keep traceback for detailed error logging | |
# Helper function to handle empty values | |
def safe_value(value, default): | |
"""Return default if value is empty or None""" | |
if value is None or value == "": | |
return default | |
return value | |
# Get Hugging Face token from environment variable (as fallback) | |
DEFAULT_HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", None) | |
# Create global variables for model and tokenizer | |
global_model = None | |
global_tokenizer = None | |
model_loaded = False | |
loaded_model_name = "None" # Keep track of which model was loaded | |
def load_model(hf_token): | |
"""Load the model with the provided token""" | |
global global_model, global_tokenizer, model_loaded, loaded_model_name | |
# Initially assume tabs should be hidden until successful load | |
initial_tabs_update = gr.Tabs.update(visible=False) | |
if not hf_token: | |
model_loaded = False | |
loaded_model_name = "None" | |
return "⚠️ Please enter your Hugging Face token to use the model.", initial_tabs_update | |
try: | |
# Try different model versions from smallest to largest | |
model_options = [ | |
"google/gemma-2b-it", | |
"google/gemma-7b-it", | |
"google/gemma-2b", | |
"google/gemma-7b", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Fallback | |
] | |
print(f"Attempting to load models with token starting with: {hf_token[:5]}...") | |
loaded_successfully = False | |
for model_name in model_options: | |
try: | |
print(f"\n--- Attempting to load model: {model_name} ---") | |
is_gemma = "gemma" in model_name.lower() | |
current_token = hf_token if is_gemma else None | |
print("Loading tokenizer...") | |
global_tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
token=current_token | |
) | |
print("Tokenizer loaded successfully.") | |
print(f"Loading model {model_name}...") | |
global_model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, # Using float16 for broader compatibility | |
device_map="auto", | |
token=current_token | |
) | |
print(f"Model {model_name} loaded successfully!") | |
model_loaded = True | |
loaded_model_name = model_name | |
loaded_successfully = True | |
tabs_update = gr.Tabs.update(visible=True) | |
status_msg = f"✅ Model '{model_name}' loaded successfully!" | |
if "tinyllama" in model_name.lower(): | |
status_msg = f"✅ Fallback model '{model_name}' loaded successfully! Limited capabilities compared to Gemma." | |
return status_msg, tabs_update | |
except ImportError as import_err: | |
print(f"Import Error loading {model_name}: {import_err}. Check dependencies (e.g., bitsandbytes, accelerate).") | |
continue | |
except Exception as specific_e: | |
print(f"Failed to load {model_name}: {specific_e}") | |
if "401 Client Error" in str(specific_e) or "requires you to be logged in" in str(specific_e) and is_gemma: | |
print("Authentication error likely. Check token and license agreement.") | |
continue | |
if not loaded_successfully: | |
model_loaded = False | |
loaded_model_name = "None" | |
print("Could not load any model version.") | |
return "❌ Could not load any model. Please check your token, license acceptance, dependencies, and network connection.", initial_tabs_update | |
except Exception as e: | |
model_loaded = False | |
loaded_model_name = "None" | |
error_msg = str(e) | |
print(f"Error in load_model: {error_msg}") | |
traceback.print_exc() | |
if "401 Client Error" in error_msg or "requires you to be logged in" in error_msg : | |
return "❌ Authentication failed. Check token/license.", initial_tabs_update | |
else: | |
return f"❌ Unexpected error during model loading: {error_msg}", initial_tabs_update | |
def generate_prompt(task_type, **kwargs): | |
"""Generate appropriate prompts based on task type and parameters""" | |
prompts = { | |
"creative": "Write a {style} about {topic}. Be creative and engaging.", | |
"informational": "Write an {format_type} about {topic}. Be clear, factual, and informative.", | |
"summarize": "Summarize the following text concisely:\n\n{text}", | |
"translate": "Translate the following text to {target_lang}:\n\n{text}", | |
"qa": "Based on the following text:\n\n{text}\n\nAnswer this question: {question}", | |
"code_generate": "Write {language} code to {task}. Include comments explaining the code.", | |
"code_explain": "Explain the following {language} code in simple terms:\n\n```\n{code}\n```", | |
"code_debug": "Identify and fix the potential bug(s) in the following {language} code. Explain the fix:\n\n```\n{code}\n```", | |
"brainstorm": "Brainstorm {category} ideas about {topic}. Provide a diverse list.", | |
"content_creation": "Create a {content_type} about {topic} targeting {audience}. Make it engaging.", | |
"email_draft": "Draft a professional {email_type} email regarding the following:\n\n{context}", | |
"document_edit": "Improve the following text for {edit_type}:\n\n{text}", | |
"explain": "Explain {topic} clearly for a {level} audience.", | |
"classify": "Classify the following text into one of these categories: {categories}\n\nText: {text}\n\nCategory:", | |
"data_extract": "Extract the following data points ({data_points}) from the text below:\n\nText: {text}\n\nExtracted Data:", | |
} | |
prompt_template = prompts.get(task_type) | |
if prompt_template: | |
try: | |
keys_in_template = [k[1:-1] for k in prompt_template.split('{') if '}' in k for k in [k.split('}')[0]]] | |
final_kwargs = {key: kwargs.get(key, f"[{key}]") for key in keys_in_template} | |
final_kwargs.update(kwargs) # Add extras | |
return prompt_template.format(**final_kwargs) | |
except KeyError as e: | |
print(f"Warning: Missing key for prompt template '{task_type}': {e}") | |
return kwargs.get("prompt", f"Generate text based on: {kwargs}") | |
else: | |
return kwargs.get("prompt", "Generate text based on the input.") | |
def generate_text(prompt, max_new_tokens=1024, temperature=0.7, top_p=0.9): | |
"""Generate text using the loaded model""" | |
global global_model, global_tokenizer, model_loaded, loaded_model_name | |
print(f"\n--- Generating Text ---") | |
print(f"Model: {loaded_model_name}") | |
print(f"Params: max_new_tokens={max_new_tokens}, temp={temperature}, top_p={top_p}") | |
print(f"Prompt (start): {prompt[:150]}...") | |
if not model_loaded or global_model is None or global_tokenizer is None: | |
return "⚠️ Model not loaded. Please authenticate first." | |
if not prompt: | |
return "⚠️ Please enter a prompt or configure a task." | |
try: | |
chat_prompt = prompt # Default to raw prompt | |
if loaded_model_name and ("it" in loaded_model_name.lower() or "instruct" in loaded_model_name.lower() or "chat" in loaded_model_name.lower()): | |
if "gemma" in loaded_model_name.lower(): | |
# Use Gemma's specific format | |
chat_prompt = f"<start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n" | |
elif "tinyllama" in loaded_model_name.lower(): | |
# Use TinyLlama's chat format | |
chat_prompt = f"<|system|>\nYou are a friendly chatbot.</s>\n<|user|>\n{prompt}</s>\n<|assistant|>\n" | |
else: # Generic instruction format | |
chat_prompt = f"User: {prompt}\nAssistant:" | |
inputs = global_tokenizer(chat_prompt, return_tensors="pt", add_special_tokens=True).to(global_model.device) | |
input_length = inputs.input_ids.shape[1] | |
print(f"Input token length: {input_length}") | |
effective_max_new_tokens = min(int(max_new_tokens), 2048) | |
# Handle potential None for eos_token_id | |
eos_token_id = global_tokenizer.eos_token_id | |
if eos_token_id is None: | |
print("Warning: eos_token_id is None, using default 50256.") | |
eos_token_id = 50256 # A common default EOS token ID | |
generation_args = { | |
"input_ids": inputs.input_ids, | |
"attention_mask": inputs.attention_mask, | |
"max_new_tokens": effective_max_new_tokens, | |
"do_sample": True, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"pad_token_id": eos_token_id # Use determined EOS or default | |
} | |
print(f"Generation args: {generation_args}") | |
with torch.no_grad(): | |
outputs = global_model.generate(**generation_args) | |
generated_ids = outputs[0, input_length:] | |
generated_text = global_tokenizer.decode(generated_ids, skip_special_tokens=True) | |
print(f"Generated text length: {len(generated_text)}") | |
print(f"Generated text (start): {generated_text[:150]}...") | |
return generated_text.strip() | |
except Exception as e: | |
error_msg = str(e) | |
print(f"Generation error: {error_msg}") | |
traceback.print_exc() | |
if "CUDA out of memory" in error_msg: | |
return f"❌ Error: CUDA out of memory. Try reducing 'Max New Tokens' or using a smaller model." | |
elif "probability tensor contains nan" in error_msg or "invalid value encountered" in error_msg: | |
return f"❌ Error: Generation failed (invalid probability). Try adjusting Temperature/Top-P or modifying the prompt." | |
else: | |
return f"❌ Error during text generation: {error_msg}" | |
# --- UI Components & Layout --- | |
def create_parameter_ui(): | |
with gr.Accordion("✨ Generation Parameters", open=False): | |
with gr.Row(): | |
max_new_tokens = gr.Slider(minimum=64, maximum=2048, value=512, step=64, label="Max New Tokens", info="Max tokens to generate.") | |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature", info="Controls randomness.") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.") | |
return [max_new_tokens, temperature, top_p] | |
# Language map (defined once) | |
lang_map = {"Python": "python", "JavaScript": "javascript", "Java": "java", "C++": "cpp", "HTML": "html", "CSS": "css", "SQL": "sql", "Bash": "bash", "Rust": "rust", "Other": "plaintext"} | |
# --- Gradio Interface --- | |
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True, title="Gemma Capabilities Demo") as demo: | |
# Header | |
gr.Markdown( | |
""" | |
<div style="text-align: center; margin-bottom: 20px;"><h1><span style="font-size: 1.5em;">🤖</span> Gemma Capabilities Demo</h1> | |
<p>Explore text generation with Google's Gemma models (or a fallback).</p> | |
<p style="font-size: 0.9em;"><a href="https://huggingface.co/google/gemma-7b-it" target="_blank">[Accept Gemma License Here]</a></p></div>""" | |
) | |
# --- Authentication --- | |
with gr.Group(): # Removed variant="panel" | |
gr.Markdown("### 🔑 Authentication") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Paste token (hf_...)", type="password", value=DEFAULT_HF_TOKEN, info="Needed for Gemma models.") | |
with gr.Column(scale=1, min_width=150): | |
auth_button = gr.Button("Load Model", variant="primary") | |
auth_status = gr.Markdown("ℹ️ Enter token & click 'Load Model'. May take time.") | |
gr.Markdown( | |
"**Token Info:** Get from [HF Settings](https://huggingface.co/settings/tokens) (read access). Ensure Gemma license is accepted.", | |
elem_id="token-info" # Optional ID for styling if needed later | |
) | |
# --- Main Content Tabs --- | |
with gr.Tabs(elem_id="main_tabs", visible=False) as tabs: | |
# --- Text Generation Tab --- | |
with gr.TabItem("📝 Creative & Informational"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Configure Task") | |
text_gen_type = gr.Radio(["Creative Writing", "Informational Writing", "Custom Prompt"], label="Writing Type", value="Creative Writing") | |
with gr.Group(visible=True) as creative_options: | |
style = gr.Dropdown(["short story", "poem", "script", "song lyrics", "joke", "dialogue"], label="Style", value="short story") | |
creative_topic = gr.Textbox(label="Topic", placeholder="e.g., a lonely astronaut", value="a robot discovering music", lines=2) | |
with gr.Group(visible=False) as info_options: | |
format_type = gr.Dropdown(["article", "summary", "explanation", "report", "comparison"], label="Format", value="article") | |
info_topic = gr.Textbox(label="Topic", placeholder="e.g., quantum physics basics", value="AI impact on healthcare", lines=2) | |
with gr.Group(visible=False) as custom_prompt_group: | |
custom_prompt = gr.Textbox(label="Custom Prompt", placeholder="Enter full prompt...", lines=5) | |
text_gen_params = create_parameter_ui() | |
# Removed gr.Spacer | |
generate_text_btn = gr.Button("Generate Text", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Generated Output") | |
text_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True) | |
# Visibility logic | |
def update_text_gen_visibility(choice): | |
return { creative_options: gr.update(visible=choice == "Creative Writing"), | |
info_options: gr.update(visible=choice == "Informational Writing"), | |
custom_prompt_group: gr.update(visible=choice == "Custom Prompt") } | |
text_gen_type.change(update_text_gen_visibility, text_gen_type, [creative_options, info_options, custom_prompt_group], queue=False) | |
# Click handler | |
def text_gen_click(gen_type, style, c_topic, fmt_type, i_topic, custom_pr, *params): | |
task_map = {"Creative Writing": ("creative", {"style": style, "topic": c_topic}), | |
"Informational Writing": ("informational", {"format_type": fmt_type, "topic": i_topic}), | |
"Custom Prompt": ("custom", {"prompt": custom_pr})} | |
task_type, kwargs = task_map.get(gen_type, ("custom", {"prompt": custom_pr})) | |
# Apply safe_value inside handler where needed | |
if task_type == "creative": kwargs = {"style": safe_value(style, "story"), "topic": safe_value(c_topic, "[topic]")} | |
elif task_type == "informational": kwargs = {"format_type": safe_value(fmt_type, "article"), "topic": safe_value(i_topic, "[topic]")} | |
else: kwargs = {"prompt": safe_value(custom_pr, "Write something.")} | |
final_prompt = generate_prompt(task_type, **kwargs) | |
return generate_text(final_prompt, *params) | |
generate_text_btn.click(text_gen_click, [text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params], text_output) | |
# Examples | |
gr.Examples( examples=[ ["Creative Writing", "poem", "sound of rain", "", "", "", 512, 0.7, 0.9], | |
["Informational Writing", "", "", "explanation", "photosynthesis", "", 768, 0.6, 0.9], | |
["Custom Prompt", "", "", "", "", "Dialogue: cat and dog discuss humans.", 512, 0.8, 0.95] ], | |
inputs=[text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params[:3]], # Pass UI elements | |
outputs=text_output, label="Try examples...") | |
# --- Brainstorming Tab --- | |
with gr.TabItem("🧠 Brainstorming"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
brainstorm_category = gr.Dropdown(["project", "business", "creative", "solution", "content", "feature", "product name"], label="Category", value="project") | |
brainstorm_topic = gr.Textbox(label="Topic/Problem", placeholder="e.g., reducing plastic waste", value="unique mobile app ideas", lines=3) | |
brainstorm_params = create_parameter_ui() | |
# Removed gr.Spacer | |
brainstorm_btn = gr.Button("Generate Ideas", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Generated Ideas") | |
brainstorm_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True) | |
def brainstorm_click(category, topic, *params): | |
prompt = generate_prompt("brainstorm", category=safe_value(category, "project"), topic=safe_value(topic, "ideas")) | |
return generate_text(prompt, *params) | |
brainstorm_btn.click(brainstorm_click, [brainstorm_category, brainstorm_topic, *brainstorm_params], brainstorm_output) | |
gr.Examples([ ["solution", "engaging online learning", 768, 0.8, 0.9], | |
["business", "eco-friendly subscription boxes", 768, 0.75, 0.9], | |
["creative", "fantasy novel themes", 512, 0.85, 0.95] ], | |
inputs=[brainstorm_category, brainstorm_topic, *brainstorm_params[:3]], outputs=brainstorm_output, label="Try examples...") | |
# --- Code Tab --- | |
with gr.TabItem("💻 Code"): | |
with gr.Tabs(): | |
with gr.TabItem("Generate"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
code_lang_gen = gr.Dropdown(list(lang_map.keys())[:-1], label="Language", value="Python") | |
code_task = gr.Textbox(label="Task", placeholder="e.g., function for factorial", value="Python class for calculator", lines=4) | |
code_gen_params = create_parameter_ui() | |
# Removed gr.Spacer | |
code_gen_btn = gr.Button("Generate Code", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Generated Code") | |
code_output = gr.Code(label="Result", language="python", lines=25, interactive=False) | |
def gen_code_click(lang, task, *params): | |
prompt = generate_prompt("code_generate", language=safe_value(lang, "Python"), task=safe_value(task, "hello world")) | |
result = generate_text(prompt, *params) | |
# Basic code block extraction | |
if "```" in result: | |
parts = result.split("```") | |
if len(parts) >= 2: | |
block = parts[1] | |
if '\n' in block: first_line, rest = block.split('\n', 1); return rest.strip() if first_line.strip().lower() == lang.lower() else block.strip() | |
else: return block.strip() | |
return result.strip() | |
def update_gen_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext")) | |
code_lang_gen.change(update_gen_lang_display, code_lang_gen, code_output, queue=False) | |
code_gen_btn.click(gen_code_click, [code_lang_gen, code_task, *code_gen_params], code_output) | |
gr.Examples([ ["JavaScript", "email validation regex function", 768, 0.6, 0.9], | |
["SQL", "select users > 30 yrs old", 512, 0.5, 0.8], | |
["HTML", "basic portfolio structure", 1024, 0.7, 0.9] ], | |
inputs=[code_lang_gen, code_task, *code_gen_params[:3]], outputs=code_output, label="Try examples...") | |
with gr.TabItem("Explain"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
code_lang_explain = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python") | |
code_to_explain = gr.Code(label="Code to Explain", language="python", lines=15) | |
explain_code_params = create_parameter_ui() | |
# Removed gr.Spacer | |
explain_code_btn = gr.Button("Explain Code", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Explanation") | |
code_explanation = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True) | |
def explain_code_click(lang, code, *params): | |
code_content = safe_value(code['code'] if isinstance(code, dict) else code, "# Empty code") | |
prompt = generate_prompt("code_explain", language=safe_value(lang, "code"), code=code_content) | |
return generate_text(prompt, *params) | |
def update_explain_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext")) | |
code_lang_explain.change(update_explain_lang_display, code_lang_explain, code_to_explain, queue=False) | |
explain_code_btn.click(explain_code_click, [code_lang_explain, code_to_explain, *explain_code_params], code_explanation) | |
with gr.TabItem("Debug"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
code_lang_debug = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python") | |
code_to_debug = gr.Code(label="Buggy Code", language="python", lines=15, value="def avg(nums):\n # Potential div by zero\n return sum(nums)/len(nums)") | |
debug_code_params = create_parameter_ui() | |
# Removed gr.Spacer | |
debug_code_btn = gr.Button("Debug Code", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Debugging Analysis") | |
debug_result = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True) | |
def debug_code_click(lang, code, *params): | |
code_content = safe_value(code['code'] if isinstance(code, dict) else code, "# Empty code") | |
prompt = generate_prompt("code_debug", language=safe_value(lang, "code"), code=code_content) | |
return generate_text(prompt, *params) | |
def update_debug_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext")) | |
code_lang_debug.change(update_debug_lang_display, code_lang_debug, code_to_debug, queue=False) | |
debug_code_btn.click(debug_code_click, [code_lang_debug, code_to_debug, *debug_code_params], debug_result) | |
# --- Comprehension Tab --- | |
with gr.TabItem("📚 Comprehension"): | |
with gr.Tabs(): | |
with gr.TabItem("Summarize"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
summarize_text = gr.Textbox(label="Text to Summarize", lines=15, placeholder="Paste long text...") | |
summarize_params = create_parameter_ui() | |
# Removed gr.Spacer | |
summarize_btn = gr.Button("Summarize Text", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Summary") | |
summary_output = gr.Textbox(label="Result", lines=15, interactive=False, show_copy_button=True) | |
def summarize_click(text, *params): | |
prompt = generate_prompt("summarize", text=safe_value(text, "[empty text]")) | |
# Adjust max tokens for summary specifically if needed | |
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 64), 512) | |
return generate_text(prompt, *p_list) | |
summarize_btn.click(summarize_click, [summarize_text, *summarize_params], summary_output) | |
with gr.TabItem("Q & A"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
qa_text = gr.Textbox(label="Context Text", lines=10, placeholder="Paste text containing answer...") | |
qa_question = gr.Textbox(label="Question", placeholder="Ask question about text...") | |
qa_params = create_parameter_ui() | |
# Removed gr.Spacer | |
qa_btn = gr.Button("Get Answer", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Answer") | |
qa_output = gr.Textbox(label="Result", lines=10, interactive=False, show_copy_button=True) | |
def qa_click(text, question, *params): | |
prompt = generate_prompt("qa", text=safe_value(text, "[context]"), question=safe_value(question,"[question]")) | |
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 32), 256) | |
return generate_text(prompt, *p_list) | |
qa_btn.click(qa_click, [qa_text, qa_question, *qa_params], qa_output) | |
with gr.TabItem("Translate"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
translate_text = gr.Textbox(label="Text to Translate", lines=8, placeholder="Enter text...") | |
target_lang = gr.Dropdown(["French", "Spanish", "German", "Japanese", "Chinese", "Russian", "Arabic", "Hindi", "Portuguese", "Italian"], label="Translate To", value="French") | |
translate_params = create_parameter_ui() | |
# Removed gr.Spacer | |
translate_btn = gr.Button("Translate Text", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Translation") | |
translation_output = gr.Textbox(label="Result", lines=8, interactive=False, show_copy_button=True) | |
def translate_click(text, lang, *params): | |
prompt = generate_prompt("translate", text=safe_value(text,"[text]"), target_lang=safe_value(lang,"French")) | |
p_list = list(params); p_list[0] = max(int(p_list[0]), 64) | |
return generate_text(prompt, *p_list) | |
translate_btn.click(translate_click, [translate_text, target_lang, *translate_params], translation_output) | |
# --- More Tasks Tab --- | |
with gr.TabItem("🛠️ More Tasks"): | |
with gr.Tabs(): | |
with gr.TabItem("Content Creation"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
content_type = gr.Dropdown(["blog post outline", "social media post (Twitter)", "social media post (LinkedIn)", "marketing email subject line", "product description", "press release intro"], label="Content Type", value="blog post outline") | |
content_topic = gr.Textbox(label="Topic", value="sustainable travel tips", lines=2) | |
content_audience = gr.Textbox(label="Audience", value="eco-conscious millennials") | |
content_params = create_parameter_ui() | |
# Removed gr.Spacer | |
content_btn = gr.Button("Generate Content", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Generated Content") | |
content_output = gr.Textbox(label="Result", lines=20, interactive=False, show_copy_button=True) | |
def content_click(c_type, topic, audience, *params): | |
prompt = generate_prompt("content_creation", content_type=safe_value(c_type,"text"), topic=safe_value(topic,"[topic]"), audience=safe_value(audience,"[audience]")) | |
return generate_text(prompt, *params) | |
content_btn.click(content_click, [content_type, content_topic, content_audience, *content_params], content_output) | |
with gr.TabItem("Email Drafting"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
email_type = gr.Dropdown(["job inquiry", "meeting request", "follow-up", "thank you", "support response", "sales outreach"], label="Email Type", value="meeting request") | |
email_context = gr.Textbox(label="Context/Points", lines=5, value="Request meeting next week re: project X. Suggest Tue/Wed afternoon.") | |
email_params = create_parameter_ui() | |
# Removed gr.Spacer | |
email_btn = gr.Button("Generate Draft", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Generated Draft") | |
email_output = gr.Textbox(label="Result", lines=20, interactive=False, show_copy_button=True) | |
def email_click(e_type, context, *params): | |
prompt = generate_prompt("email_draft", email_type=safe_value(e_type,"email"), context=safe_value(context,"[context]")) | |
return generate_text(prompt, *params) | |
email_btn.click(email_click, [email_type, email_context, *email_params], email_output) | |
with gr.TabItem("Doc Editing"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
edit_text = gr.Textbox(label="Text to Edit", lines=10, placeholder="Paste text...") | |
edit_type = gr.Dropdown(["improve clarity", "fix grammar/spelling", "make concise", "make formal", "make casual", "simplify"], label="Improve For", value="improve clarity") | |
edit_params = create_parameter_ui() | |
# Removed gr.Spacer | |
edit_btn = gr.Button("Edit Text", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Edited Text") | |
edit_output = gr.Textbox(label="Result", lines=10, interactive=False, show_copy_button=True) | |
def edit_click(text, e_type, *params): | |
prompt = generate_prompt("document_edit", text=safe_value(text,"[text]"), edit_type=safe_value(e_type,"clarity")) | |
p_list = list(params); input_tokens = len(safe_value(text,"").split()); p_list[0] = max(int(p_list[0]), input_tokens + 64) | |
return generate_text(prompt, *p_list) | |
edit_btn.click(edit_click, [edit_text, edit_type, *edit_params], edit_output) | |
with gr.TabItem("Classification"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
classify_text = gr.Textbox(label="Text to Classify", lines=8, value="Sci-fi movie explores AI consciousness.") | |
classify_categories = gr.Textbox(label="Categories (comma-sep)", value="Tech, Entertainment, Science, Politics") | |
classify_params = create_parameter_ui() | |
# Removed gr.Spacer | |
classify_btn = gr.Button("Classify Text", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Classification") | |
classify_output = gr.Textbox(label="Predicted Category", lines=2, interactive=False, show_copy_button=True) | |
def classify_click(text, cats, *params): | |
prompt = generate_prompt("classify", text=safe_value(text,"[text]"), categories=safe_value(cats,"cat1, cat2")) | |
p_list = list(params); p_list[0] = min(max(int(p_list[0]), 16), 128) | |
raw = generate_text(prompt, *p_list) | |
# Basic post-processing attempt | |
lines = raw.split('\n'); last = lines[-1].strip(); possible = [c.strip().lower() for c in cats.split(',')]; return last if last.lower() in possible else raw | |
classify_btn.click(classify_click, [classify_text, classify_categories, *classify_params], classify_output) | |
with gr.TabItem("Data Extraction"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Setup") | |
extract_text = gr.Textbox(label="Source Text", lines=10, value="Order #123 by Jane ([email protected]). Total: $99. Shipped: 123 Main St.") | |
extract_data_points = gr.Textbox(label="Data Points (comma-sep)", value="order num, name, email, total, address") | |
extract_params = create_parameter_ui() | |
# Removed gr.Spacer | |
extract_btn = gr.Button("Extract Data", variant="primary") | |
with gr.Column(scale=1): | |
gr.Markdown("#### Extracted Data") | |
extract_output = gr.Textbox(label="Result (JSON or Key-Value)", lines=10, interactive=False, show_copy_button=True) | |
def extract_click(text, points, *params): | |
prompt = generate_prompt("data_extract", text=safe_value(text,"[text]"), data_points=safe_value(points,"info")) | |
return generate_text(prompt, *params) | |
extract_btn.click(extract_click, [extract_text, extract_data_points, *extract_params], extract_output) | |
# --- Authentication Handler & Footer --- | |
footer_status = gr.Markdown(f"...", elem_id="footer-status-md") # Placeholder | |
def handle_auth(token): | |
yield "⏳ Authenticating & loading model...", gr.Tabs.update(visible=False) | |
status_message, tabs_update = load_model(token) | |
yield status_message, tabs_update | |
def update_footer_status(status_text): # Updates footer based on global state | |
return gr.Markdown.update(value=f""" | |
<hr><div style="text-align: center; font-size: 0.9em; color: #777;"> | |
<p>Powered by Hugging Face 🤗 Transformers & Gradio. Model: <strong>{loaded_model_name if model_loaded else 'None'}</strong>.</p> | |
<p>Review outputs carefully. Models may generate inaccurate information.</p></div>""") | |
auth_button.click(handle_auth, hf_token, [auth_status, tabs], queue=True) | |
# Update footer whenever auth status text changes | |
auth_status.change(update_footer_status, auth_status, footer_status, queue=False) | |
# Initial footer update on load | |
demo.load(update_footer_status, auth_status, footer_status, queue=False) | |
# --- Launch App --- | |
demo.launch(share=False) |