Spaces:
Sleeping
Sleeping
File size: 15,878 Bytes
d0ca936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# src/evaluation.py
import torch
import numpy as np
from tqdm.auto import tqdm
from sacrebleu.metrics import BLEU, CHRF
from rouge_score import rouge_scorer
import Levenshtein
from collections import defaultdict
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
import salt.constants
import datetime
import os
from google.cloud import translate_v3
from config import GOOGLE_LANG_MAP
def setup_google_translate():
"""Setup Google Cloud Translation client if credentials available."""
try:
# Check if running in HF Space with credentials
if os.getenv("GOOGLE_APPLICATION_CREDENTIALS") or os.getenv("GOOGLE_CLOUD_PROJECT"):
client = translate_v3.TranslationServiceClient()
project_id = os.getenv("GOOGLE_CLOUD_PROJECT", "sb-gcp-project-01")
parent = f"projects/{project_id}/locations/global"
return client, parent
else:
print("Google Cloud credentials not found. Google Translate will not be available.")
return None, None
except Exception as e:
print(f"Error setting up Google Translate: {e}")
return None, None
def google_translate_batch(texts, source_langs, target_langs, client, parent):
"""Translate using Google Cloud Translation API."""
translations = []
for text, src_lang, tgt_lang in tqdm(zip(texts, source_langs, target_langs),
total=len(texts), desc="Google Translate"):
try:
# Map SALT language codes to Google's format
src_google = GOOGLE_LANG_MAP.get(src_lang, src_lang)
tgt_google = GOOGLE_LANG_MAP.get(tgt_lang, tgt_lang)
# Check if language pair is supported
supported_langs = ['lg', 'ach', 'sw', 'en']
if src_google not in supported_langs or tgt_google not in supported_langs:
translations.append(f"[UNSUPPORTED: {src_lang}->{tgt_lang}]")
continue
# Make translation request
request = {
"parent": parent,
"contents": [text],
"mime_type": "text/plain",
"source_language_code": src_google,
"target_language_code": tgt_google,
}
response = client.translate_text(request=request)
translation = response.translations[0].translated_text
translations.append(translation)
except Exception as e:
print(f"Error translating '{text}': {e}")
translations.append(f"[ERROR: {str(e)[:50]}]")
return translations
def get_translation_function(model, tokenizer, model_path):
"""Get appropriate translation function based on model type."""
if model_path == 'google-translate':
client, parent = setup_google_translate()
if client is None:
raise Exception("Google Translate credentials not available")
def translation_fn(texts, from_langs, to_langs):
return google_translate_batch(texts, from_langs, to_langs, client, parent)
return translation_fn
elif 'gemma' in str(type(model)).lower() or 'gemma' in model_path.lower():
return get_gemma_translation_fn(model, tokenizer)
elif hasattr(model, 'base_model') and hasattr(model.base_model, 'model') and 'Qwen2ForCausalLM' in str(type(model.base_model.model)):
return get_qwen_translation_fn(model, tokenizer)
elif 'm2m_100' in str(type(model)).lower():
return get_nllb_translation_fn(model, tokenizer)
elif hasattr(model, 'base_model') and hasattr(model.base_model, 'model') and 'LlamaForCausalLM' in str(type(model.base_model.model)):
return get_llama_translation_fn(model, tokenizer)
else:
# Generic function for other models
return get_generic_translation_fn(model, tokenizer)
def get_gemma_translation_fn(model, tokenizer):
"""Translation function for Gemma models."""
def translation_fn(texts, from_langs, to_langs):
SYSTEM_MESSAGE = 'You are a linguist and translation assistant specialising in Ugandan languages.'
translations = []
batch_size = 4
device = next(model.parameters()).device
instructions = [
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES[from_lang]} '
f'to {salt.constants.SALT_LANGUAGE_NAMES[to_lang]}: {text}'
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
]
for i in tqdm(range(0, len(instructions), batch_size), desc="Generating translations"):
batch_instructions = instructions[i:i + batch_size]
messages_list = [
[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": instruction}
] for instruction in batch_instructions
]
prompts = [
tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
) for messages in messages_list
]
inputs = tokenizer(
prompts, return_tensors="pt",
padding=True, padding_side='left',
max_length=512, truncation=True
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.5,
num_beams=5,
do_sample=True,
no_repeat_ngram_size=5,
pad_token_id=tokenizer.eos_token_id
)
for j in range(len(outputs)):
translation = tokenizer.decode(
outputs[j, inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
translations.append(translation)
return translations
return translation_fn
def get_qwen_translation_fn(model, tokenizer):
"""Translation function for Qwen models."""
def translation_fn(texts, from_langs, to_langs):
SYSTEM_MESSAGE = 'You are a Ugandan language assistant.'
translations = []
batch_size = 8
device = next(model.parameters()).device
instructions = [
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES.get(from_lang, from_lang)} '
f'to {salt.constants.SALT_LANGUAGE_NAMES.get(to_lang, to_lang)}: {text}'
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
]
for i in tqdm(range(0, len(instructions), batch_size), desc="Generating translations"):
batch_instructions = instructions[i:i + batch_size]
messages_list = [
[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": instruction}
] for instruction in batch_instructions
]
prompts = [
tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
) for messages in messages_list
]
inputs = tokenizer(
prompts, return_tensors="pt",
padding=True, padding_side='left', truncation=True
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=100,
temperature=0.01,
pad_token_id=tokenizer.eos_token_id
)
for j in range(len(outputs)):
translation = tokenizer.decode(
outputs[j, inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
translations.append(translation)
return translations
return translation_fn
def get_nllb_translation_fn(model, tokenizer):
"""Translation function for NLLB models."""
def translation_fn(texts, source_langs, target_langs):
translations = []
language_tokens = salt.constants.SALT_LANGUAGE_TOKENS_NLLB_TRANSLATION
device = next(model.parameters()).device
for text, source_language, target_language in tqdm(
zip(texts, source_langs, target_langs), total=len(texts), desc="NLLB Translation"):
inputs = tokenizer(text, return_tensors="pt").to(device)
inputs['input_ids'][0][0] = language_tokens[source_language]
with torch.no_grad():
translated_tokens = model.generate(
**inputs,
forced_bos_token_id=language_tokens[target_language],
max_length=100,
num_beams=5,
)
result = tokenizer.batch_decode(
translated_tokens, skip_special_tokens=True)[0]
translations.append(result)
return translations
return translation_fn
def get_llama_translation_fn(model, tokenizer):
"""Translation function for Llama models."""
def translation_fn(texts, from_langs, to_langs):
DATE_TODAY = datetime.datetime.now().strftime("%d %b %Y")
SYSTEM_MESSAGE = ''
translations = []
batch_size = 8
device = next(model.parameters()).device
instructions = [
f'Translate from {salt.constants.SALT_LANGUAGE_NAMES.get(from_lang, from_lang)} '
f'to {salt.constants.SALT_LANGUAGE_NAMES.get(to_lang, to_lang)}: {text}'
for text, from_lang, to_lang in zip(texts, from_langs, to_langs)
]
for i in tqdm(range(0, len(instructions), batch_size), desc="Llama Translation"):
batch_instructions = instructions[i:i + batch_size]
messages_list = [
[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": instruction}
] for instruction in batch_instructions
]
prompts = [
tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True,
date_string=DATE_TODAY,
) for messages in messages_list
]
inputs = tokenizer(
prompts, return_tensors="pt",
padding=True, padding_side='left',
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=100,
temperature=0.01,
pad_token_id=tokenizer.eos_token_id
)
for j in range(len(outputs)):
translation = tokenizer.decode(
outputs[j, inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
translations.append(translation)
return translations
return translation_fn
def get_generic_translation_fn(model, tokenizer):
"""Generic translation function for unknown model types."""
def translation_fn(texts, from_langs, to_langs):
translations = []
device = next(model.parameters()).device
for text, from_lang, to_lang in tqdm(zip(texts, from_langs, to_langs),
desc="Generic Translation"):
prompt = f"Translate from {from_lang} to {to_lang}: {text}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
translation = tokenizer.decode(
outputs[0, inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
translations.append(translation)
return translations
return translation_fn
def calculate_metrics(reference: str, prediction: str) -> dict:
"""Calculate multiple translation quality metrics."""
bleu = BLEU(effective_order=True)
bleu_score = bleu.sentence_score(prediction, [reference]).score
chrf = CHRF()
chrf_score = chrf.sentence_score(prediction, [reference]).score / 100.0
cer = Levenshtein.distance(reference, prediction) / max(len(reference), 1)
ref_words = reference.split()
pred_words = prediction.split()
wer = Levenshtein.distance(ref_words, pred_words) / max(len(ref_words), 1)
len_ratio = len(prediction) / max(len(reference), 1)
metrics = {
"bleu": bleu_score,
"chrf": chrf_score,
"cer": cer,
"wer": wer,
"len_ratio": len_ratio,
}
try:
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = scorer.score(reference, prediction)
metrics["rouge1"] = rouge_scores['rouge1'].fmeasure
metrics["rouge2"] = rouge_scores['rouge2'].fmeasure
metrics["rougeL"] = rouge_scores['rougeL'].fmeasure
metrics["quality_score"] = (
bleu_score/100 +
chrf_score +
(1-cer) +
(1-wer) +
rouge_scores['rouge1'].fmeasure +
rouge_scores['rougeL'].fmeasure
) / 6
except Exception as e:
print(f"Error calculating ROUGE metrics: {e}")
metrics["quality_score"] = (bleu_score/100 + chrf_score + (1-cer) + (1-wer)) / 4
return metrics
def evaluate_model_full(model, tokenizer, model_path: str, test_data) -> dict:
"""Complete model evaluation pipeline."""
# Get translation function
translation_fn = get_translation_function(model, tokenizer, model_path)
# Generate predictions
print("Generating translations...")
predictions = translation_fn(
list(test_data['source']),
list(test_data['source.language']),
list(test_data['target.language']),
)
# Calculate metrics by language pair
print("Calculating metrics...")
translation_subsets = defaultdict(list)
for idx, row in test_data.iterrows():
direction = row['source.language'] + '_to_' + row['target.language']
row_dict = dict(row)
row_dict['prediction'] = predictions[idx]
translation_subsets[direction].append(row_dict)
normalizer = BasicTextNormalizer()
grouped_metrics = defaultdict(dict)
for subset in translation_subsets.keys():
subset_metrics = defaultdict(list)
for example in translation_subsets[subset]:
prediction = normalizer(str(example['prediction']))
reference = normalizer(example['target'])
metrics = calculate_metrics(reference, prediction)
for m in metrics.keys():
subset_metrics[m].append(metrics[m])
for m in subset_metrics.keys():
if subset_metrics[m]: # Check if list is not empty
grouped_metrics[subset][m] = float(np.mean(subset_metrics[m]))
# Calculate overall averages
all_metrics = list(grouped_metrics.values())[0].keys() if grouped_metrics else []
for m in all_metrics:
metric_values = []
for subset in translation_subsets.keys():
if m in grouped_metrics[subset]:
metric_values.append(grouped_metrics[subset][m])
if metric_values:
grouped_metrics['averages'][m] = float(np.mean(metric_values))
return dict(grouped_metrics) |