Spaces:
Running
Running
File size: 21,990 Bytes
3dcbb9d cfbcff1 3218de7 cfbcff1 23201ae 2644208 23201ae cfbcff1 23201ae 2644208 cfbcff1 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 cfbcff1 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae cfbcff1 23201ae cfbcff1 23201ae cfbcff1 23201ae cfbcff1 2644208 cfbcff1 2644208 23201ae 2644208 cfbcff1 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 cfbcff1 ce626d3 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae ce626d3 2644208 ce626d3 2644208 cfbcff1 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae cfbcff1 23201ae cfbcff1 2644208 cfbcff1 23201ae 2644208 23201ae ce626d3 23201ae ce626d3 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae cfbcff1 23201ae cfbcff1 2644208 cfbcff1 23201ae 2644208 cfbcff1 ce626d3 2644208 cfbcff1 2644208 cfbcff1 23201ae 2644208 23201ae 2644208 cfbcff1 23201ae 2644208 cfbcff1 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 cfbcff1 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae cfbcff1 23201ae 2644208 cfbcff1 2644208 cfbcff1 2644208 23201ae 2644208 cfbcff1 23201ae 2644208 cfbcff1 2644208 cfbcff1 2644208 cfbcff1 2644208 cfbcff1 2644208 cfbcff1 23201ae 2644208 cfbcff1 ce626d3 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae ce626d3 2644208 ce626d3 2644208 23201ae 2644208 cfbcff1 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 cfbcff1 23201ae cfbcff1 2644208 cfbcff1 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae ce626d3 2644208 ce626d3 2644208 23201ae 2644208 23201ae cfbcff1 23201ae cfbcff1 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 23201ae 2644208 cfbcff1 ce626d3 2644208 ce626d3 2644208 23201ae cfbcff1 2644208 cfbcff1 23201ae 2644208 cfbcff1 ce626d3 cfbcff1 2644208 23201ae 2644208 cfbcff1 23201ae 2644208 23201ae cfbcff1 2644208 cfbcff1 2644208 23201ae cfbcff1 23201ae cfbcff1 2644208 cfbcff1 2644208 23201ae cfbcff1 23201ae ce626d3 23201ae ce626d3 2644208 23201ae 2644208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
# src/plotting.py
import json
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
import json
from collections import defaultdict
from typing import Dict, List, Optional, Union
from config import (
LANGUAGE_NAMES,
ALL_UG40_LANGUAGES,
GOOGLE_SUPPORTED_LANGUAGES,
METRICS_CONFIG,
EVALUATION_TRACKS,
MODEL_CATEGORIES,
CHART_CONFIG,
STATISTICAL_CONFIG,
SAMPLE_SIZE_RECOMMENDATIONS,
)
# Scientific plotting style
plt.style.use("default")
plt.rcParams["figure.facecolor"] = "white"
plt.rcParams["axes.facecolor"] = "white"
plt.rcParams["font.size"] = 10
plt.rcParams["axes.labelsize"] = 12
plt.rcParams["axes.titlesize"] = 14
plt.rcParams["xtick.labelsize"] = 10
plt.rcParams["ytick.labelsize"] = 10
def create_scientific_leaderboard_plot(
df: pd.DataFrame, track: str, metric: str = "quality", top_n: int = 15
) -> go.Figure:
"""Create scientific leaderboard plot with confidence intervals."""
if df.empty:
fig = go.Figure()
fig.add_annotation(
text="No models available for this track",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(title=f"No Data Available - {track.title()} Track")
return fig
# Get top N models for this track
metric_col = f"{track}_{metric}"
ci_lower_col = f"{track}_ci_lower"
ci_upper_col = f"{track}_ci_upper"
if metric_col not in df.columns:
fig = go.Figure()
fig.add_annotation(
text=f"Metric {metric} not available for {track} track",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
)
return fig
# Filter and sort
valid_models = df[(df[metric_col] > 0)].head(top_n)
if valid_models.empty:
fig = go.Figure()
fig.add_annotation(text="No valid models found", x=0.5, y=0.5, showarrow=False)
return fig
# Create color mapping by category
category_colors = {}
for i, category in enumerate(MODEL_CATEGORIES.keys()):
category_colors[category] = MODEL_CATEGORIES[category]["color"]
colors = [category_colors.get(cat, "#808080") for cat in valid_models["model_category"]]
# Main bar plot
fig = go.Figure()
# Add bars with error bars if confidence intervals available
if ci_lower_col in valid_models.columns and ci_upper_col in valid_models.columns:
error_y = dict(
type="data",
array=valid_models[ci_upper_col] - valid_models[metric_col],
arrayminus=valid_models[metric_col] - valid_models[ci_lower_col],
visible=True,
thickness=2,
width=4,
)
else:
error_y = None
fig.add_trace(go.Bar(
y=valid_models["model_name"],
x=valid_models[metric_col],
orientation="h",
marker=dict(color=colors, line=dict(color="black", width=0.5)),
error_x=error_y,
text=[f"{score:.3f}" for score in valid_models[metric_col]],
textposition="auto",
hovertemplate=(
"<b>%{y}</b><br>" +
f"{metric.title()}: %{{x:.4f}}<br>" +
"Category: %{customdata[0]}<br>" +
"Author: %{customdata[1]}<br>" +
"Samples: %{customdata[2]}<br>" +
"<extra></extra>"
),
customdata=list(zip(
valid_models["model_category"],
valid_models["author"],
valid_models.get(f"{track}_samples", [0] * len(valid_models))
)),
))
# Customize layout
track_info = EVALUATION_TRACKS[track]
fig.update_layout(
title=f"π {track_info['name']} - {metric.title()} Score",
xaxis_title=f"{metric.title()} Score (with 95% CI)",
yaxis_title="Models",
height=max(400, len(valid_models) * 35 + 100),
margin=dict(l=20, r=20, t=60, b=20),
plot_bgcolor="white",
paper_bgcolor="white",
font=dict(size=12),
)
# Reverse y-axis to show best model at top
fig.update_yaxes(autorange="reversed")
# Add category legend
for category, info in MODEL_CATEGORIES.items():
if category in valid_models["model_category"].values:
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode="markers",
marker=dict(size=10, color=info["color"]),
name=info["name"],
showlegend=True,
))
return fig
def create_language_pair_heatmap_scientific(
model_results: Dict, track: str, metric: str = "quality_score"
) -> go.Figure:
"""Create research-grade language pair heatmap with proper axes."""
if not model_results or "tracks" not in model_results:
fig = go.Figure()
fig.add_annotation(text="No model results available", x=0.5, y=0.5, showarrow=False)
return fig
track_data = model_results["tracks"].get(track, {})
if track_data.get("error") or "pair_metrics" not in track_data:
fig = go.Figure()
fig.add_annotation(text=f"No data available for {track} track", x=0.5, y=0.5, showarrow=False)
return fig
pair_metrics = track_data["pair_metrics"]
track_languages = EVALUATION_TRACKS[track]["languages"]
# Create matrix for heatmap
n_langs = len(track_languages)
matrix = np.full((n_langs, n_langs), np.nan)
for i, src_lang in enumerate(track_languages):
for j, tgt_lang in enumerate(track_languages):
if src_lang != tgt_lang:
pair_key = f"{src_lang}_to_{tgt_lang}"
if pair_key in pair_metrics and metric in pair_metrics[pair_key]:
matrix[i, j] = pair_metrics[pair_key][metric]["mean"]
# Create language labels
lang_labels = [LANGUAGE_NAMES.get(lang, lang.upper()) for lang in track_languages]
# Create heatmap
fig = go.Figure(data=go.Heatmap(
z=matrix,
x=lang_labels,
y=lang_labels,
colorscale="Viridis",
showscale=True,
colorbar=dict(
title=f"{metric.replace('_', ' ').title()}",
titleside="right",
len=0.8,
),
hovertemplate=(
"Source: %{y}<br>" +
"Target: %{x}<br>" +
f"{metric.replace('_', ' ').title()}: %{{z:.3f}}<br>" +
"<extra></extra>"
),
zmin=0,
zmax=1 if metric == "quality_score" else None,
))
# Customize layout
track_info = EVALUATION_TRACKS[track]
fig.update_layout(
title=f"πΊοΈ {track_info['name']} - {metric.replace('_', ' ').title()} by Language Pair",
xaxis_title="Target Language",
yaxis_title="Source Language",
height=600,
width=700,
font=dict(size=12),
xaxis=dict(side="bottom"),
yaxis=dict(autorange="reversed"), # Source languages from top to bottom
)
return fig
def create_statistical_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
"""Create statistical comparison plot showing confidence intervals."""
if df.empty:
fig = go.Figure()
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
return fig
metric_col = f"{track}_quality"
ci_lower_col = f"{track}_ci_lower"
ci_upper_col = f"{track}_ci_upper"
# Filter to models with data for this track
valid_models = df[
(df[metric_col] > 0) &
(df[ci_lower_col].notna()) &
(df[ci_upper_col].notna())
].head(10)
if valid_models.empty:
fig = go.Figure()
fig.add_annotation(text="No models with confidence intervals", x=0.5, y=0.5, showarrow=False)
return fig
fig = go.Figure()
# Add confidence intervals as error bars
for i, (_, model) in enumerate(valid_models.iterrows()):
category = model["model_category"]
color = MODEL_CATEGORIES.get(category, {}).get("color", "#808080")
# Main point
fig.add_trace(go.Scatter(
x=[model[metric_col]],
y=[i],
mode="markers",
marker=dict(
size=12,
color=color,
line=dict(color="black", width=1),
),
name=model["model_name"],
showlegend=False,
hovertemplate=(
f"<b>{model['model_name']}</b><br>" +
f"Quality: {model[metric_col]:.4f}<br>" +
f"95% CI: [{model[ci_lower_col]:.4f}, {model[ci_upper_col]:.4f}]<br>" +
f"Category: {category}<br>" +
"<extra></extra>"
),
))
# Confidence interval line
fig.add_trace(go.Scatter(
x=[model[ci_lower_col], model[ci_upper_col]],
y=[i, i],
mode="lines",
line=dict(color=color, width=3),
showlegend=False,
hoverinfo="skip",
))
# CI endpoints
fig.add_trace(go.Scatter(
x=[model[ci_lower_col], model[ci_upper_col]],
y=[i, i],
mode="markers",
marker=dict(
symbol="line-ns",
size=10,
color=color,
line=dict(width=2),
),
showlegend=False,
hoverinfo="skip",
))
# Customize layout
track_info = EVALUATION_TRACKS[track]
fig.update_layout(
title=f"π {track_info['name']} - Statistical Comparison",
xaxis_title="Quality Score",
yaxis_title="Models",
height=max(400, len(valid_models) * 40 + 100),
yaxis=dict(
tickmode="array",
tickvals=list(range(len(valid_models))),
ticktext=valid_models["model_name"].tolist(),
autorange="reversed",
),
showlegend=False,
plot_bgcolor="white",
paper_bgcolor="white",
)
return fig
def create_category_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
"""Create category-wise comparison plot."""
if df.empty:
fig = go.Figure()
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
return fig
metric_col = f"{track}_quality"
adequate_col = f"{track}_adequate"
# Filter to adequate models
valid_models = df[df[adequate_col] & (df[metric_col] > 0)]
if valid_models.empty:
fig = go.Figure()
fig.add_annotation(text="No adequate models found", x=0.5, y=0.5, showarrow=False)
return fig
fig = go.Figure()
# Create box plot for each category
for category, info in MODEL_CATEGORIES.items():
category_models = valid_models[valid_models["model_category"] == category]
if len(category_models) > 0:
fig.add_trace(go.Box(
y=category_models[metric_col],
name=info["name"],
marker_color=info["color"],
boxpoints="all", # Show all points
jitter=0.3,
pointpos=-1.8,
hovertemplate=(
f"<b>{info['name']}</b><br>" +
"Quality: %{y:.4f}<br>" +
"Model: %{customdata}<br>" +
"<extra></extra>"
),
customdata=category_models["model_name"],
))
# Customize layout
track_info = EVALUATION_TRACKS[track]
fig.update_layout(
title=f"π {track_info['name']} - Performance by Category",
xaxis_title="Model Category",
yaxis_title="Quality Score",
height=500,
showlegend=False,
plot_bgcolor="white",
paper_bgcolor="white",
)
return fig
def create_adequacy_analysis_plot(df: pd.DataFrame) -> go.Figure:
"""Create analysis plot for statistical adequacy across tracks."""
if df.empty:
fig = go.Figure()
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
return fig
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
"Sample Sizes by Track",
"Statistical Adequacy Distribution",
"Scientific Adequacy Scores",
"Model Categories Distribution"
),
specs=[
[{"type": "bar"}, {"type": "pie"}],
[{"type": "histogram"}, {"type": "bar"}]
]
)
# Sample sizes by track
track_names = []
sample_counts = []
for track in EVALUATION_TRACKS.keys():
samples_col = f"{track}_samples"
if samples_col in df.columns:
total_samples = df[df[samples_col] > 0][samples_col].sum()
track_names.append(track.replace("_", " ").title())
sample_counts.append(total_samples)
if track_names:
fig.add_trace(
go.Bar(x=track_names, y=sample_counts, name="Samples"),
row=1, col=1
)
# Statistical adequacy distribution
adequacy_bins = pd.cut(
df["scientific_adequacy_score"],
bins=[0, 0.3, 0.6, 0.8, 1.0],
labels=["Poor", "Fair", "Good", "Excellent"]
)
adequacy_counts = adequacy_bins.value_counts()
if not adequacy_counts.empty:
fig.add_trace(
go.Pie(
labels=adequacy_counts.index,
values=adequacy_counts.values,
name="Adequacy"
),
row=1, col=2
)
# Scientific adequacy scores histogram
fig.add_trace(
go.Histogram(
x=df["scientific_adequacy_score"],
nbinsx=20,
name="Adequacy Scores"
),
row=2, col=1
)
# Model categories distribution
category_counts = df["model_category"].value_counts()
category_colors = [MODEL_CATEGORIES.get(cat, {}).get("color", "#808080") for cat in category_counts.index]
fig.add_trace(
go.Bar(
x=category_counts.index,
y=category_counts.values,
marker_color=category_colors,
name="Categories"
),
row=2, col=2
)
fig.update_layout(
title="π Scientific Evaluation Analysis",
height=800,
showlegend=False
)
return fig
def create_cross_track_analysis_plot(df: pd.DataFrame) -> go.Figure:
"""Create cross-track performance correlation analysis."""
if df.empty:
fig = go.Figure()
fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
return fig
# Get models with data in multiple tracks
quality_cols = [f"{track}_quality" for track in EVALUATION_TRACKS.keys()]
available_cols = [col for col in quality_cols if col in df.columns]
if len(available_cols) < 2:
fig = go.Figure()
fig.add_annotation(text="Need at least 2 tracks for comparison", x=0.5, y=0.5, showarrow=False)
return fig
# Filter to models with data in multiple tracks
multi_track_models = df.copy()
for col in available_cols:
multi_track_models = multi_track_models[multi_track_models[col] > 0]
if len(multi_track_models) < 3:
fig = go.Figure()
fig.add_annotation(text="Insufficient models for cross-track analysis", x=0.5, y=0.5, showarrow=False)
return fig
# Create scatter plot matrix
track_pairs = [(available_cols[i], available_cols[j])
for i in range(len(available_cols))
for j in range(i+1, len(available_cols))]
if not track_pairs:
fig = go.Figure()
fig.add_annotation(text="No track pairs available", x=0.5, y=0.5, showarrow=False)
return fig
# Use first pair for demonstration
x_col, y_col = track_pairs[0]
x_track = x_col.replace("_quality", "").replace("_", " ").title()
y_track = y_col.replace("_quality", "").replace("_", " ").title()
fig = go.Figure()
# Color by category
for category, info in MODEL_CATEGORIES.items():
category_models = multi_track_models[multi_track_models["model_category"] == category]
if len(category_models) > 0:
fig.add_trace(go.Scatter(
x=category_models[x_col],
y=category_models[y_col],
mode="markers",
marker=dict(
size=10,
color=info["color"],
line=dict(color="black", width=1),
),
name=info["name"],
text=category_models["model_name"],
hovertemplate=(
"<b>%{text}</b><br>" +
f"{x_track}: %{{x:.4f}}<br>" +
f"{y_track}: %{{y:.4f}}<br>" +
f"Category: {info['name']}<br>" +
"<extra></extra>"
),
))
# Add diagonal line for reference
min_val = min(multi_track_models[x_col].min(), multi_track_models[y_col].min())
max_val = max(multi_track_models[x_col].max(), multi_track_models[y_col].max())
fig.add_trace(go.Scatter(
x=[min_val, max_val],
y=[min_val, max_val],
mode="lines",
line=dict(dash="dash", color="gray", width=2),
name="Perfect Correlation",
showlegend=False,
hoverinfo="skip",
))
fig.update_layout(
title=f"π Cross-Track Performance: {x_track} vs {y_track}",
xaxis_title=f"{x_track} Quality Score",
yaxis_title=f"{y_track} Quality Score",
height=600,
width=600,
plot_bgcolor="white",
paper_bgcolor="white",
)
return fig
def create_scientific_model_detail_plot(model_results: Dict, model_name: str, track: str) -> go.Figure:
"""Create detailed scientific analysis for a specific model."""
if not model_results or "tracks" not in model_results:
fig = go.Figure()
fig.add_annotation(text="No model results available", x=0.5, y=0.5, showarrow=False)
return fig
track_data = model_results["tracks"].get(track, {})
if track_data.get("error") or "pair_metrics" not in track_data:
fig = go.Figure()
fig.add_annotation(text=f"No data for {track} track", x=0.5, y=0.5, showarrow=False)
return fig
pair_metrics = track_data["pair_metrics"]
track_languages = EVALUATION_TRACKS[track]["languages"]
# Extract data for plotting
pairs = []
quality_means = []
quality_cis = []
bleu_means = []
sample_counts = []
for src in track_languages:
for tgt in track_languages:
if src == tgt:
continue
pair_key = f"{src}_to_{tgt}"
if pair_key in pair_metrics:
metrics = pair_metrics[pair_key]
if "quality_score" in metrics and "sample_count" in metrics:
pair_label = f"{LANGUAGE_NAMES.get(src, src)} β {LANGUAGE_NAMES.get(tgt, tgt)}"
pairs.append(pair_label)
quality_stats = metrics["quality_score"]
quality_means.append(quality_stats["mean"])
quality_cis.append([quality_stats["ci_lower"], quality_stats["ci_upper"]])
bleu_stats = metrics.get("bleu", {"mean": 0})
bleu_means.append(bleu_stats["mean"])
sample_counts.append(metrics["sample_count"])
if not pairs:
fig = go.Figure()
fig.add_annotation(text="No language pair data available", x=0.5, y=0.5, showarrow=False)
return fig
# Create subplots
fig = make_subplots(
rows=2, cols=1,
subplot_titles=(
"Quality Scores by Language Pair (with 95% CI)",
"BLEU Scores by Language Pair"
),
vertical_spacing=0.15,
)
# Quality scores with confidence intervals
error_y = dict(
type="data",
array=[ci[1] - mean for ci, mean in zip(quality_cis, quality_means)],
arrayminus=[mean - ci[0] for ci, mean in zip(quality_cis, quality_means)],
visible=True,
thickness=2,
width=4,
)
fig.add_trace(
go.Bar(
x=pairs,
y=quality_means,
error_y=error_y,
name="Quality Score",
marker_color="steelblue",
text=[f"{score:.3f}" for score in quality_means],
textposition="outside",
hovertemplate=(
"<b>%{x}</b><br>" +
"Quality: %{y:.4f}<br>" +
"Samples: %{customdata}<br>" +
"<extra></extra>"
),
customdata=sample_counts,
),
row=1, col=1
)
# BLEU scores
fig.add_trace(
go.Bar(
x=pairs,
y=bleu_means,
name="BLEU Score",
marker_color="coral",
text=[f"{score:.1f}" for score in bleu_means],
textposition="outside",
),
row=2, col=1
)
# Customize layout
track_info = EVALUATION_TRACKS[track]
fig.update_layout(
title=f"π¬ Detailed Analysis: {model_name} - {track_info['name']}",
height=900,
showlegend=False,
margin=dict(l=50, r=50, t=100, b=150),
)
# Rotate x-axis labels
fig.update_xaxes(tickangle=45, row=1, col=1)
fig.update_xaxes(tickangle=45, row=2, col=1)
return fig |