File size: 21,904 Bytes
423834f
 
 
 
 
 
 
 
f0df659
 
 
 
 
 
 
 
 
 
 
 
423834f
 
f0df659
 
 
423834f
f0df659
 
423834f
 
 
f0df659
423834f
 
f0df659
423834f
 
 
 
f0df659
423834f
f0df659
 
423834f
 
f0df659
423834f
f0df659
 
6ff2c45
423834f
 
f0df659
423834f
f0df659
 
423834f
 
 
f0df659
423834f
f0df659
423834f
f0df659
 
423834f
 
 
 
 
f0df659
 
 
423834f
f0df659
423834f
f0df659
 
423834f
 
 
f0df659
423834f
f0df659
423834f
f0df659
 
423834f
 
f0df659
 
 
423834f
f0df659
 
 
 
423834f
f0df659
 
 
 
 
423834f
 
f0df659
 
 
 
 
 
423834f
f0df659
 
 
 
423834f
 
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
423834f
 
f0df659
 
 
423834f
f0df659
 
 
423834f
 
 
f0df659
 
 
 
423834f
f0df659
423834f
f0df659
 
423834f
 
f0df659
423834f
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
 
f0df659
 
 
 
423834f
 
f0df659
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
423834f
f0df659
 
 
 
 
 
 
 
423834f
 
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
423834f
f0df659
423834f
f0df659
 
 
 
 
 
 
423834f
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423834f
f0df659
 
423834f
 
f0df659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# src/evaluation.py
import pandas as pd
import numpy as np
from sacrebleu.metrics import BLEU, CHRF
from rouge_score import rouge_scorer
import Levenshtein
from collections import defaultdict
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from typing import Dict, List, Tuple, Optional
from scipy import stats
from scipy.stats import bootstrap
import warnings
from config import (
    ALL_UG40_LANGUAGES,
    GOOGLE_SUPPORTED_LANGUAGES,
    METRICS_CONFIG,
    STATISTICAL_CONFIG,
    EVALUATION_TRACKS,
    MODEL_CATEGORIES,
)
from src.utils import get_all_language_pairs, get_google_comparable_pairs

warnings.filterwarnings("ignore", category=RuntimeWarning)


def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
    """Calculate all metrics for a single sentence pair with robust error handling."""

    # Handle empty predictions
    if not prediction or not isinstance(prediction, str):
        prediction = ""

    if not reference or not isinstance(reference, str):
        reference = ""

    # Normalize texts
    normalizer = BasicTextNormalizer()
    pred_norm = normalizer(prediction)
    ref_norm = normalizer(reference)

    metrics = {}

    # BLEU score (0-100 scale)
    try:
        bleu = BLEU(effective_order=True)
        metrics["bleu"] = bleu.sentence_score(pred_norm, [ref_norm]).score
    except:
        metrics["bleu"] = 0.0

    # ChrF score (normalize to 0-1)
    try:
        chrf = CHRF()
        metrics["chrf"] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
    except:
        metrics["chrf"] = 0.0

    # Character Error Rate (CER)
    try:
        if len(ref_norm) > 0:
            metrics["cer"] = Levenshtein.distance(ref_norm, pred_norm) / len(ref_norm)
        else:
            metrics["cer"] = 1.0 if len(pred_norm) > 0 else 0.0
    except:
        metrics["cer"] = 1.0

    # Word Error Rate (WER)
    try:
        ref_words = ref_norm.split()
        pred_words = pred_norm.split()
        if len(ref_words) > 0:
            metrics["wer"] = Levenshtein.distance(ref_words, pred_words) / len(
                ref_words
            )
        else:
            metrics["wer"] = 1.0 if len(pred_words) > 0 else 0.0
    except:
        metrics["wer"] = 1.0

    # Length ratio
    try:
        if len(ref_norm) > 0:
            metrics["len_ratio"] = len(pred_norm) / len(ref_norm)
        else:
            metrics["len_ratio"] = 1.0 if len(pred_norm) == 0 else float("inf")
    except:
        metrics["len_ratio"] = 1.0

    # ROUGE scores
    try:
        scorer = rouge_scorer.RougeScorer(
            ["rouge1", "rouge2", "rougeL"], use_stemmer=True
        )
        rouge_scores = scorer.score(ref_norm, pred_norm)

        metrics["rouge1"] = rouge_scores["rouge1"].fmeasure
        metrics["rouge2"] = rouge_scores["rouge2"].fmeasure
        metrics["rougeL"] = rouge_scores["rougeL"].fmeasure
    except:
        metrics["rouge1"] = 0.0
        metrics["rouge2"] = 0.0
        metrics["rougeL"] = 0.0

    # Quality score (composite metric)
    try:
        quality_components = [
            metrics["bleu"] / 100.0,  # Normalize BLEU to 0-1
            metrics["chrf"],  # Already 0-1
            1.0 - min(metrics["cer"], 1.0),  # Invert error rates
            1.0 - min(metrics["wer"], 1.0),
            metrics["rouge1"],
            metrics["rougeL"],
        ]
        metrics["quality_score"] = np.mean(quality_components)
    except:
        metrics["quality_score"] = 0.0

    return metrics


def calculate_statistical_metrics(values: List[float]) -> Dict[str, float]:
    """Calculate statistical measures including confidence intervals."""

    if not values or len(values) == 0:
        return {
            "mean": 0.0,
            "std": 0.0,
            "median": 0.0,
            "ci_lower": 0.0,
            "ci_upper": 0.0,
            "n_samples": 0,
        }

    values = np.array(values)
    values = values[~np.isnan(values)]  # Remove NaN values

    if len(values) == 0:
        return {
            "mean": 0.0,
            "std": 0.0,
            "median": 0.0,
            "ci_lower": 0.0,
            "ci_upper": 0.0,
            "n_samples": 0,
        }

    stats_dict = {
        "mean": float(np.mean(values)),
        "std": float(np.std(values, ddof=1)) if len(values) > 1 else 0.0,
        "median": float(np.median(values)),
        "n_samples": len(values),
    }

    # Calculate confidence intervals using bootstrap if enough samples
    if len(values) >= STATISTICAL_CONFIG["min_samples_for_ci"]:
        try:
            confidence_level = STATISTICAL_CONFIG["confidence_level"]

            # Bootstrap confidence interval
            def mean_func(x):
                return np.mean(x)

            res = bootstrap(
                (values,),
                mean_func,
                n_resamples=STATISTICAL_CONFIG["bootstrap_samples"],
                confidence_level=confidence_level,
                random_state=42,
            )

            stats_dict["ci_lower"] = float(res.confidence_interval.low)
            stats_dict["ci_upper"] = float(res.confidence_interval.high)

        except Exception as e:
            # Fallback to t-distribution CI
            try:
                alpha = 1 - confidence_level
                t_val = stats.t.ppf(1 - alpha / 2, len(values) - 1)
                margin = t_val * stats_dict["std"] / np.sqrt(len(values))
                stats_dict["ci_lower"] = stats_dict["mean"] - margin
                stats_dict["ci_upper"] = stats_dict["mean"] + margin
            except:
                stats_dict["ci_lower"] = stats_dict["mean"]
                stats_dict["ci_upper"] = stats_dict["mean"]
    else:
        stats_dict["ci_lower"] = stats_dict["mean"]
        stats_dict["ci_upper"] = stats_dict["mean"]

    return stats_dict


def perform_significance_test(
    values1: List[float], values2: List[float], metric_name: str
) -> Dict[str, float]:
    """Perform statistical significance test between two groups."""

    if len(values1) < 2 or len(values2) < 2:
        return {"p_value": 1.0, "effect_size": 0.0, "significant": False}

    values1 = np.array(values1)
    values2 = np.array(values2)

    # Remove NaN values
    values1 = values1[~np.isnan(values1)]
    values2 = values2[~np.isnan(values2)]

    if len(values1) < 2 or len(values2) < 2:
        return {"p_value": 1.0, "effect_size": 0.0, "significant": False}

    try:
        # Perform t-test
        t_stat, p_value = stats.ttest_ind(values1, values2, equal_var=False)

        # Calculate effect size (Cohen's d)
        pooled_std = np.sqrt(
            (
                (len(values1) - 1) * np.var(values1, ddof=1)
                + (len(values2) - 1) * np.var(values2, ddof=1)
            )
            / (len(values1) + len(values2) - 2)
        )

        if pooled_std > 0:
            effect_size = abs(np.mean(values1) - np.mean(values2)) / pooled_std
        else:
            effect_size = 0.0

        # Determine significance
        significance_level = EVALUATION_TRACKS["google_comparable"][
            "significance_level"
        ]
        significant = p_value < significance_level

        return {
            "p_value": float(p_value),
            "effect_size": float(effect_size),
            "significant": significant,
            "t_statistic": float(t_stat),
        }

    except Exception as e:
        return {"p_value": 1.0, "effect_size": 0.0, "significant": False}


def evaluate_predictions_by_track(
    predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
) -> Dict:
    """Evaluate predictions for a specific track with statistical analysis."""

    print(f"πŸ”„ Evaluating for {track} track...")

    track_config = EVALUATION_TRACKS[track]
    track_languages = track_config["languages"]

    # Filter test set and predictions to track languages
    track_test_set = test_set[
        (test_set["source_language"].isin(track_languages))
        & (test_set["target_language"].isin(track_languages))
    ].copy()

    # Merge predictions with test set
    merged = track_test_set.merge(
        predictions, on="sample_id", how="inner", suffixes=("", "_pred")
    )

    if len(merged) == 0:
        return {
            "error": f"No matching samples found for {track} track",
            "evaluated_samples": 0,
            "track": track,
        }

    print(f"πŸ“Š Evaluating {len(merged)} samples for {track} track...")

    # Calculate metrics for each sample
    sample_metrics = []
    for idx, row in merged.iterrows():
        metrics = calculate_sentence_metrics(row["target_text"], row["prediction"])
        metrics["sample_id"] = row["sample_id"]
        metrics["source_language"] = row["source_language"]
        metrics["target_language"] = row["target_language"]
        sample_metrics.append(metrics)

    sample_df = pd.DataFrame(sample_metrics)

    # Aggregate by language pairs with statistical analysis
    pair_metrics = {}
    overall_metrics = defaultdict(list)

    # Calculate metrics for each language pair
    for src_lang in track_languages:
        for tgt_lang in track_languages:
            if src_lang == tgt_lang:
                continue

            pair_data = sample_df[
                (sample_df["source_language"] == src_lang)
                & (sample_df["target_language"] == tgt_lang)
            ]

            if len(pair_data) >= track_config["min_samples_per_pair"]:
                pair_key = f"{src_lang}_to_{tgt_lang}"
                pair_metrics[pair_key] = {}

                # Calculate statistical metrics for each measure
                for metric in (
                    METRICS_CONFIG["primary_metrics"]
                    + METRICS_CONFIG["secondary_metrics"]
                ):
                    if metric in pair_data.columns:
                        values = (
                            pair_data[metric]
                            .replace([np.inf, -np.inf], np.nan)
                            .dropna()
                        )

                        if len(values) > 0:
                            stats_metrics = calculate_statistical_metrics(
                                values.tolist()
                            )
                            pair_metrics[pair_key][metric] = stats_metrics

                            # Add to overall metrics for track-level statistics
                            overall_metrics[metric].append(stats_metrics["mean"])

                pair_metrics[pair_key]["sample_count"] = len(pair_data)
                pair_metrics[pair_key]["languages"] = f"{src_lang}-{tgt_lang}"

    # Calculate track-level aggregated statistics
    track_averages = {}
    track_statistics = {}

    for metric in overall_metrics:
        if overall_metrics[metric]:
            track_stats = calculate_statistical_metrics(overall_metrics[metric])
            track_averages[metric] = track_stats["mean"]
            track_statistics[metric] = track_stats

    # Generate evaluation summary
    summary = {
        "track": track,
        "track_name": track_config["name"],
        "total_samples": len(sample_df),
        "language_pairs_evaluated": len(
            [k for k in pair_metrics if pair_metrics[k].get("sample_count", 0) > 0]
        ),
        "languages_covered": len(
            set(sample_df["source_language"]) | set(sample_df["target_language"])
        ),
        "min_samples_per_pair": track_config["min_samples_per_pair"],
        "statistical_power": track_config["statistical_power"],
        "significance_level": track_config["significance_level"],
    }

    return {
        "sample_metrics": sample_df,
        "pair_metrics": pair_metrics,
        "track_averages": track_averages,
        "track_statistics": track_statistics,
        "summary": summary,
        "evaluated_samples": len(sample_df),
        "track": track,
        "error": None,
    }


def evaluate_predictions_scientific(
    predictions: pd.DataFrame, test_set: pd.DataFrame, model_category: str = "community"
) -> Dict:
    """Comprehensive evaluation across all tracks with scientific rigor."""

    print("πŸ”¬ Starting scientific evaluation...")

    # Validate model category
    if model_category not in MODEL_CATEGORIES:
        model_category = "community"

    evaluation_results = {
        "model_category": model_category,
        "category_info": MODEL_CATEGORIES[model_category],
        "tracks": {},
        "cross_track_analysis": {},
        "scientific_metadata": {
            "evaluation_timestamp": pd.Timestamp.now().isoformat(),
            "total_samples_submitted": len(predictions),
            "total_samples_available": len(test_set),
        },
    }

    # Evaluate each track
    for track_name in EVALUATION_TRACKS.keys():
        track_result = evaluate_predictions_by_track(predictions, test_set, track_name)
        evaluation_results["tracks"][track_name] = track_result

    # Cross-track consistency analysis
    evaluation_results["cross_track_analysis"] = analyze_cross_track_consistency(
        evaluation_results["tracks"]
    )

    return evaluation_results


def analyze_cross_track_consistency(track_results: Dict) -> Dict:
    """Analyze consistency of model performance across different tracks."""

    consistency_analysis = {
        "track_correlations": {},
        "performance_stability": {},
        "language_coverage_analysis": {},
    }

    # Extract quality scores from each track for correlation analysis
    track_scores = {}
    for track_name, track_data in track_results.items():
        if (
            track_data.get("track_averages")
            and "quality_score" in track_data["track_averages"]
        ):
            track_scores[track_name] = track_data["track_averages"]["quality_score"]

    # Calculate pairwise correlations (would need more data points for meaningful correlation)
    if len(track_scores) >= 2:
        track_names = list(track_scores.keys())
        for i, track1 in enumerate(track_names):
            for track2 in track_names[i + 1 :]:
                # This would be more meaningful with multiple models
                consistency_analysis["track_correlations"][f"{track1}_vs_{track2}"] = {
                    "score_difference": abs(
                        track_scores[track1] - track_scores[track2]
                    ),
                    "relative_performance": track_scores[track1]
                    / max(track_scores[track2], 0.001),
                }

    # Language coverage analysis
    for track_name, track_data in track_results.items():
        if track_data.get("summary"):
            summary = track_data["summary"]
            consistency_analysis["language_coverage_analysis"][track_name] = {
                "coverage_rate": summary["language_pairs_evaluated"]
                / max(summary.get("total_possible_pairs", 1), 1),
                "samples_per_pair": summary["total_samples"]
                / max(summary["language_pairs_evaluated"], 1),
                "statistical_adequacy": summary["total_samples"]
                >= EVALUATION_TRACKS[track_name]["min_samples_per_pair"]
                * summary["language_pairs_evaluated"],
            }

    return consistency_analysis


def compare_models_statistically(
    model1_results: Dict, model2_results: Dict, track: str = "google_comparable"
) -> Dict:
    """Perform statistical comparison between two models on a specific track."""

    if track not in model1_results.get("tracks", {}) or track not in model2_results.get(
        "tracks", {}
    ):
        return {"error": f"Track {track} not available for both models"}

    track1_data = model1_results["tracks"][track]
    track2_data = model2_results["tracks"][track]

    if track1_data.get("error") or track2_data.get("error"):
        return {"error": "One or both models have evaluation errors"}

    comparison_results = {
        "track": track,
        "model1_category": model1_results.get("model_category", "unknown"),
        "model2_category": model2_results.get("model_category", "unknown"),
        "metric_comparisons": {},
        "language_pair_comparisons": {},
        "overall_significance": {},
    }

    # Compare each metric
    for metric in (
        METRICS_CONFIG["primary_metrics"] + METRICS_CONFIG["secondary_metrics"]
    ):
        if metric in track1_data.get(
            "track_statistics", {}
        ) and metric in track2_data.get("track_statistics", {}):

            # Extract sample-level data for this metric from both models
            # This would require access to the original sample metrics
            # For now, we'll use the aggregated statistics

            stats1 = track1_data["track_statistics"][metric]
            stats2 = track2_data["track_statistics"][metric]

            # Create comparison summary
            comparison_results["metric_comparisons"][metric] = {
                "model1_mean": stats1["mean"],
                "model1_ci": [stats1["ci_lower"], stats1["ci_upper"]],
                "model2_mean": stats2["mean"],
                "model2_ci": [stats2["ci_lower"], stats2["ci_upper"]],
                "difference": stats1["mean"] - stats2["mean"],
                "ci_overlap": not (
                    stats1["ci_upper"] < stats2["ci_lower"]
                    or stats2["ci_upper"] < stats1["ci_lower"]
                ),
            }

    return comparison_results


def generate_scientific_report(
    results: Dict, model_name: str = "", baseline_results: Dict = None
) -> str:
    """Generate a comprehensive scientific evaluation report."""

    if any(
        track_data.get("error") for track_data in results.get("tracks", {}).values()
    ):
        return f"❌ **Evaluation Error**: Unable to complete scientific evaluation"

    report = []

    # Header
    report.append(f"# πŸ”¬ Scientific Evaluation Report: {model_name or 'Model'}")
    report.append("")

    # Model categorization
    category_info = results.get("category_info", {})
    report.append(f"**Model Category**: {category_info.get('name', 'Unknown')}")
    report.append(
        f"**Category Description**: {category_info.get('description', 'N/A')}"
    )
    report.append("")

    # Track-by-track analysis
    for track_name, track_data in results.get("tracks", {}).items():
        if track_data.get("error"):
            continue

        track_config = EVALUATION_TRACKS[track_name]
        summary = track_data.get("summary", {})
        track_stats = track_data.get("track_statistics", {})

        report.append(f"## {track_config['name']}")
        report.append(f"*{track_config['description']}*")
        report.append("")

        # Summary statistics
        report.append("### πŸ“Š Summary Statistics")
        report.append(f"- **Samples Evaluated**: {summary.get('total_samples', 0):,}")
        report.append(
            f"- **Language Pairs**: {summary.get('language_pairs_evaluated', 0)}"
        )
        report.append(f"- **Languages Covered**: {summary.get('languages_covered', 0)}")
        report.append(f"- **Statistical Power**: {track_config['statistical_power']}")
        report.append("")

        # Primary metrics with confidence intervals
        report.append("### 🎯 Primary Metrics (95% Confidence Intervals)")
        for metric in METRICS_CONFIG["primary_metrics"]:
            if metric in track_stats:
                stats = track_stats[metric]
                mean_val = stats["mean"]
                ci_lower = stats["ci_lower"]
                ci_upper = stats["ci_upper"]

                report.append(
                    f"- **{metric.upper()}**: {mean_val:.4f} [{ci_lower:.4f}, {ci_upper:.4f}]"
                )
        report.append("")

        # Statistical adequacy assessment
        min_required = track_config["min_samples_per_pair"] * summary.get(
            "language_pairs_evaluated", 0
        )
        adequacy = (
            "βœ… Adequate"
            if summary.get("total_samples", 0) >= min_required
            else "⚠️ Limited"
        )
        report.append(f"**Statistical Adequacy**: {adequacy}")
        report.append("")

    # Cross-track analysis
    cross_track = results.get("cross_track_analysis", {})
    if cross_track:
        report.append("## πŸ”„ Cross-Track Consistency Analysis")

        coverage_analysis = cross_track.get("language_coverage_analysis", {})
        for track_name, coverage_info in coverage_analysis.items():
            adequacy = (
                "βœ… Statistically adequate"
                if coverage_info.get("statistical_adequacy")
                else "⚠️ Limited statistical power"
            )
            report.append(f"- **{track_name}**: {adequacy}")

        report.append("")

    # Baseline comparison if available
    if baseline_results:
        report.append("## πŸ“ˆ Baseline Comparison")
        # This would include detailed statistical comparisons
        report.append("*Statistical comparison with baseline models*")
        report.append("")

    # Scientific recommendations
    report.append("## πŸ’‘ Scientific Recommendations")

    total_samples = sum(
        track_data.get("summary", {}).get("total_samples", 0)
        for track_data in results.get("tracks", {}).values()
        if not track_data.get("error")
    )

    if total_samples < SAMPLE_SIZE_RECOMMENDATIONS["publication_quality"]:
        report.append(
            "- ⚠️ Consider collecting more evaluation samples for publication-quality results"
        )

    google_track = results.get("tracks", {}).get("google_comparable", {})
    if (
        not google_track.get("error")
        and google_track.get("summary", {}).get("total_samples", 0) > 100
    ):
        report.append("- βœ… Sufficient data for comparison with commercial systems")

    report.append("")

    return "\n".join(report)