File size: 16,525 Bytes
cfbcff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# src/plotting.py
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.colors as mcolors
from colorsys import rgb_to_hls, hls_to_rgb
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
from collections import defaultdict
from typing import Dict, List, Optional, Union
from config import LANGUAGE_NAMES, ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES, METRICS_CONFIG

plt.style.use('default')
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['axes.facecolor'] = 'white'

def create_leaderboard_ranking_plot(df: pd.DataFrame, metric: str = 'quality_score', top_n: int = 15) -> go.Figure:
    """Create interactive leaderboard ranking plot using Plotly."""
    
    if df.empty:
        fig = go.Figure()
        fig.add_annotation(
            text="No data available",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=16)
        )
        return fig
    
    # Get top N models
    top_models = df.head(top_n)
    
    # Create color scale based on scores
    colors = px.colors.qualitative.Set3[:len(top_models)]
    
    # Create horizontal bar chart
    fig = go.Figure(data=[
        go.Bar(
            y=top_models['model_name'],
            x=top_models[metric],
            orientation='h',
            marker=dict(
                color=top_models[metric],
                colorscale='Viridis',
                showscale=True,
                colorbar=dict(title=metric.replace('_', ' ').title())
            ),
            text=[f"{score:.3f}" for score in top_models[metric]],
            textposition='auto',
            hovertemplate=(
                "<b>%{y}</b><br>" +
                f"{metric.replace('_', ' ').title()}: %{{x:.4f}}<br>" +
                "Author: %{customdata[0]}<br>" +
                "Coverage: %{customdata[1]:.1%}<br>" +
                "<extra></extra>"
            ),
            customdata=list(zip(top_models['author'], top_models['coverage_rate']))
        )
    ])
    
    fig.update_layout(
        title=f"πŸ† SALT Translation Leaderboard - {metric.replace('_', ' ').title()}",
        xaxis_title=f"{metric.replace('_', ' ').title()} Score",
        yaxis_title="Models",
        height=max(400, len(top_models) * 30 + 100),
        margin=dict(l=20, r=20, t=60, b=20),
        plot_bgcolor='white',
        paper_bgcolor='white'
    )
    
    # Reverse y-axis to show best model at top
    fig.update_yaxes(autorange="reversed")
    
    return fig

def create_metrics_comparison_plot(df: pd.DataFrame, models: List[str] = None, max_models: int = 8) -> go.Figure:
    """Create radar chart comparing multiple metrics across models."""
    
    if df.empty:
        return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
    
    # Select models to compare
    if models is None:
        selected_models = df.head(max_models)
    else:
        selected_models = df[df['model_name'].isin(models)].head(max_models)
    
    if len(selected_models) == 0:
        return go.Figure().add_annotation(text="No models found", x=0.5, y=0.5)
    
    # Metrics to include in radar chart
    metrics = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL']
    metric_labels = ['Quality Score', 'BLEU (/100)', 'ChrF', 'ROUGE-1', 'ROUGE-L']
    
    fig = go.Figure()
    
    colors = px.colors.qualitative.Set1[:len(selected_models)]
    
    for i, (_, model) in enumerate(selected_models.iterrows()):
        # Normalize BLEU to 0-1 scale for radar chart
        values = []
        for metric in metrics:
            value = model[metric]
            if metric == 'bleu':
                value = value / 100.0  # Normalize BLEU
            values.append(value)
        
        # Close the radar chart
        values += values[:1]
        metric_labels_closed = metric_labels + [metric_labels[0]]
        
        fig.add_trace(go.Scatterpolar(
            r=values,
            theta=metric_labels_closed,
            fill='toself',
            name=model['model_name'],
            line_color=colors[i % len(colors)],
            fillcolor=colors[i % len(colors)],
            opacity=0.6
        ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 1]
            )
        ),
        showlegend=True,
        title="πŸ“Š Multi-Metric Model Comparison",
        height=600
    )
    
    return fig

def create_language_pair_heatmap(results_dict: Dict, metric: str = 'quality_score') -> go.Figure:
    """Create heatmap showing performance across language pairs."""
    
    if not results_dict or 'pair_metrics' not in results_dict:
        return go.Figure().add_annotation(text="No language pair data available", x=0.5, y=0.5)
    
    pair_metrics = results_dict['pair_metrics']
    
    # Create matrix for heatmap
    languages = ALL_UG40_LANGUAGES
    matrix = np.zeros((len(languages), len(languages)))
    
    for i, src_lang in enumerate(languages):
        for j, tgt_lang in enumerate(languages):
            if src_lang != tgt_lang:
                pair_key = f"{src_lang}_to_{tgt_lang}"
                if pair_key in pair_metrics and metric in pair_metrics[pair_key]:
                    matrix[i, j] = pair_metrics[pair_key][metric]
                else:
                    matrix[i, j] = np.nan
            else:
                matrix[i, j] = np.nan
    
    # Create language labels
    lang_labels = [LANGUAGE_NAMES.get(lang, lang) for lang in languages]
    
    fig = go.Figure(data=go.Heatmap(
        z=matrix,
        x=lang_labels,
        y=lang_labels,
        colorscale='Viridis',
        showscale=True,
        colorbar=dict(title=metric.replace('_', ' ').title()),
        hoverinfotemplate=(
            "Source: %{y}<br>" +
            "Target: %{x}<br>" +
            f"{metric.replace('_', ' ').title()}: %{{z:.3f}}<br>" +
            "<extra></extra>"
        )
    ))
    
    fig.update_layout(
        title=f"πŸ—ΊοΈ Language Pair Performance - {metric.replace('_', ' ').title()}",
        xaxis_title="Target Language",
        yaxis_title="Source Language",
        height=600,
        width=700
    )
    
    return fig

def create_coverage_analysis_plot(df: pd.DataFrame) -> go.Figure:
    """Create plot analyzing test set coverage across submissions."""
    
    if df.empty:
        return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
    
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=(
            "Coverage Distribution",
            "Language Pairs Covered",
            "Sample Count vs Quality",
            "Google Comparable Coverage"
        ),
        specs=[[{"type": "bar"}, {"type": "scatter"}],
               [{"type": "scatter"}, {"type": "bar"}]]
    )
    
    # Coverage distribution
    coverage_bins = pd.cut(df['coverage_rate'], 
                          bins=[0, 0.5, 0.8, 0.9, 0.95, 1.0],
                          labels=['<50%', '50-80%', '80-90%', '90-95%', '95-100%'])
    coverage_counts = coverage_bins.value_counts()
    
    fig.add_trace(
        go.Bar(x=coverage_counts.index, y=coverage_counts.values, name="Coverage"),
        row=1, col=1
    )
    
    # Language pairs covered vs quality
    fig.add_trace(
        go.Scatter(
            x=df['language_pairs_covered'],
            y=df['quality_score'],
            mode='markers',
            text=df['model_name'],
            name="Quality vs Coverage"
        ),
        row=1, col=2
    )
    
    # Sample count vs quality
    fig.add_trace(
        go.Scatter(
            x=df['total_samples'],
            y=df['quality_score'],
            mode='markers',
            text=df['model_name'],
            name="Quality vs Samples"
        ),
        row=2, col=1
    )
    
    # Google comparable coverage
    google_coverage = df['google_pairs_covered'].value_counts().sort_index()
    fig.add_trace(
        go.Bar(x=google_coverage.index, y=google_coverage.values, name="Google Coverage"),
        row=2, col=2
    )
    
    fig.update_layout(
        title="πŸ“ˆ Test Set Coverage Analysis",
        height=800,
        showlegend=False
    )
    
    return fig

def create_model_performance_timeline(df: pd.DataFrame) -> go.Figure:
    """Create timeline showing model performance over time."""
    
    if df.empty:
        return go.Figure().add_annotation(text="No data available", x=0.5, y=0.5)
    
    # Convert submission_date to datetime
    df_copy = df.copy()
    df_copy['submission_date'] = pd.to_datetime(df_copy['submission_date'])
    df_copy = df_copy.sort_values('submission_date')
    
    fig = go.Figure()
    
    # Add scatter plot for each submission
    fig.add_trace(go.Scatter(
        x=df_copy['submission_date'],
        y=df_copy['quality_score'],
        mode='markers+lines',
        marker=dict(
            size=10,
            color=df_copy['quality_score'],
            colorscale='Viridis',
            showscale=True,
            colorbar=dict(title="Quality Score")
        ),
        text=df_copy['model_name'],
        hovertemplate=(
            "<b>%{text}</b><br>" +
            "Date: %{x}<br>" +
            "Quality Score: %{y:.4f}<br>" +
            "<extra></extra>"
        ),
        name="Models"
    ))
    
    # Add trend line
    if len(df_copy) > 1:
        z = np.polyfit(range(len(df_copy)), df_copy['quality_score'], 1)
        trend_line = np.poly1d(z)(range(len(df_copy)))
        
        fig.add_trace(go.Scatter(
            x=df_copy['submission_date'],
            y=trend_line,
            mode='lines',
            line=dict(dash='dash', color='red'),
            name="Trend",
            hoverinfo='skip'
        ))
    
    fig.update_layout(
        title="πŸ“… Model Performance Timeline",
        xaxis_title="Submission Date",
        yaxis_title="Quality Score",
        height=500
    )
    
    return fig

def create_google_comparison_plot(df: pd.DataFrame) -> go.Figure:
    """Create plot comparing models on Google Translate-comparable language pairs."""
    
    # Filter models that have Google comparable results
    google_models = df[df['google_pairs_covered'] > 0].copy()
    
    if google_models.empty:
        return go.Figure().add_annotation(
            text="No models with Google Translate comparable results",
            x=0.5, y=0.5
        )
    
    fig = go.Figure()
    
    # Create scatter plot
    fig.add_trace(go.Scatter(
        x=google_models['google_bleu'],
        y=google_models['google_quality_score'],
        mode='markers+text',
        marker=dict(
            size=12,
            color=google_models['google_chrf'],
            colorscale='Plasma',
            showscale=True,
            colorbar=dict(title="ChrF Score")
        ),
        text=google_models['model_name'],
        textposition="top center",
        hovertemplate=(
            "<b>%{text}</b><br>" +
            "BLEU: %{x:.2f}<br>" +
            "Quality: %{y:.4f}<br>" +
            "ChrF: %{marker.color:.4f}<br>" +
            "<extra></extra>"
        ),
        name="Models"
    ))
    
    fig.update_layout(
        title="πŸ€– Google Translate Comparable Performance",
        xaxis_title="BLEU Score",
        yaxis_title="Quality Score",
        height=500
    )
    
    return fig

def create_detailed_model_analysis(model_results: Dict, model_name: str) -> go.Figure:
    """Create detailed analysis plot for a specific model."""
    
    if not model_results or 'pair_metrics' not in model_results:
        return go.Figure().add_annotation(text="No detailed results available", x=0.5, y=0.5)
    
    pair_metrics = model_results['pair_metrics']
    
    # Extract language pair data
    pairs = []
    bleu_scores = []
    quality_scores = []
    sample_counts = []
    google_comparable = []
    
    for pair_key, metrics in pair_metrics.items():
        if 'sample_count' in metrics and metrics['sample_count'] > 0:
            src, tgt = pair_key.split('_to_')
            pair_label = f"{LANGUAGE_NAMES.get(src, src)} β†’ {LANGUAGE_NAMES.get(tgt, tgt)}"
            
            pairs.append(pair_label)
            bleu_scores.append(metrics.get('bleu', 0))
            quality_scores.append(metrics.get('quality_score', 0))
            sample_counts.append(metrics.get('sample_count', 0))
            
            is_google = (src in GOOGLE_SUPPORTED_LANGUAGES and tgt in GOOGLE_SUPPORTED_LANGUAGES)
            google_comparable.append(is_google)
    
    if not pairs:
        return go.Figure().add_annotation(text="No language pair data found", x=0.5, y=0.5)
    
    # Create subplot
    fig = make_subplots(
        rows=2, cols=1,
        subplot_titles=(
            f"{model_name} - BLEU Scores by Language Pair",
            f"{model_name} - Quality Scores by Language Pair"
        ),
        vertical_spacing=0.1
    )
    
    # Color code by Google comparable
    colors = ['#1f77b4' if gc else '#ff7f0e' for gc in google_comparable]
    
    # BLEU scores
    fig.add_trace(
        go.Bar(
            x=pairs,
            y=bleu_scores,
            marker_color=colors,
            name="BLEU",
            text=[f"{score:.1f}" for score in bleu_scores],
            textposition='auto'
        ),
        row=1, col=1
    )
    
    # Quality scores
    fig.add_trace(
        go.Bar(
            x=pairs,
            y=quality_scores,
            marker_color=colors,
            name="Quality",
            text=[f"{score:.3f}" for score in quality_scores],
            textposition='auto',
            showlegend=False
        ),
        row=2, col=1
    )
    
    fig.update_layout(
        height=800,
        title=f"πŸ“Š Detailed Analysis: {model_name}",
        showlegend=True
    )
    
    # Rotate x-axis labels
    fig.update_xaxes(tickangle=45)
    
    # Add legend for colors
    fig.add_trace(
        go.Scatter(
            x=[None], y=[None],
            mode='markers',
            marker=dict(size=10, color='#1f77b4'),
            name="Google Comparable",
            showlegend=True
        )
    )
    
    fig.add_trace(
        go.Scatter(
            x=[None], y=[None],
            mode='markers',
            marker=dict(size=10, color='#ff7f0e'),
            name="UG40 Only",
            showlegend=True
        )
    )
    
    return fig

def create_submission_summary_plot(validation_info: Dict, evaluation_results: Dict) -> go.Figure:
    """Create summary plot for a new submission."""
    
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=(
            "Coverage by Language Pair",
            "Primary Metrics",
            "Error Analysis",
            "Sample Distribution"
        ),
        specs=[[{"type": "bar"}, {"type": "bar"}],
               [{"type": "bar"}, {"type": "pie"}]]
    )
    
    # Coverage by language pair
    if 'pair_coverage' in validation_info:
        pair_data = validation_info['pair_coverage']
        pairs = list(pair_data.keys())[:10]  # Top 10 pairs
        coverage_rates = [pair_data[p]['coverage_rate'] for p in pairs]
        
        fig.add_trace(
            go.Bar(x=pairs, y=coverage_rates, name="Coverage"),
            row=1, col=1
        )
    
    # Primary metrics
    if 'summary' in evaluation_results:
        metrics_data = evaluation_results['summary']['primary_metrics']
        metric_names = list(metrics_data.keys())
        metric_values = list(metrics_data.values())
        
        fig.add_trace(
            go.Bar(x=metric_names, y=metric_values, name="Metrics"),
            row=1, col=2
        )
    
    # Error analysis (CER, WER)
    if 'averages' in evaluation_results:
        error_metrics = ['cer', 'wer']
        error_values = [evaluation_results['averages'].get(m, 0) for m in error_metrics]
        
        fig.add_trace(
            go.Bar(x=error_metrics, y=error_values, name="Errors"),
            row=2, col=1
        )
    
    # Sample distribution (placeholder)
    fig.add_trace(
        go.Pie(
            labels=["Evaluated", "Missing"],
            values=[validation_info.get('coverage', 0.8) * 100, 
                   (1 - validation_info.get('coverage', 0.8)) * 100],
            name="Samples"
        ),
        row=2, col=2
    )
    
    fig.update_layout(
        title="πŸ“‹ Submission Summary",
        height=700,
        showlegend=False
    )
    
    return fig