File size: 15,374 Bytes
944a871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ebdcb
 
 
944a871
 
24ebdcb
 
944a871
 
24ebdcb
 
 
 
 
 
 
 
 
 
944a871
 
 
 
24ebdcb
 
944a871
 
 
 
 
 
 
24ebdcb
944a871
 
 
 
24ebdcb
944a871
 
 
 
 
 
 
24ebdcb
944a871
 
 
 
24ebdcb
944a871
 
 
 
 
24ebdcb
 
 
944a871
24ebdcb
944a871
 
 
 
24ebdcb
 
944a871
 
 
24ebdcb
 
 
 
 
944a871
796d1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944a871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# src/leaderboard.py
import pandas as pd
from datasets import Dataset, load_dataset
import json
import datetime
from typing import Dict, List, Optional, Tuple
import os
from config import LEADERBOARD_DATASET, HF_TOKEN, ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES
from src.utils import create_submission_id, sanitize_model_name, get_all_language_pairs, get_google_comparable_pairs

def initialize_leaderboard() -> pd.DataFrame:
    """Initialize empty leaderboard DataFrame."""
    
    columns = {
        'submission_id': [],
        'model_name': [],
        'author': [],
        'submission_date': [],
        'model_type': [],
        'description': [],
        
        # Primary metrics
        'quality_score': [],
        'bleu': [],
        'chrf': [],
        
        # Secondary metrics  
        'rouge1': [],
        'rouge2': [],
        'rougeL': [],
        'cer': [],
        'wer': [],
        'len_ratio': [],
        
        # Google comparable metrics
        'google_quality_score': [],
        'google_bleu': [],
        'google_chrf': [],
        
        # Coverage info
        'total_samples': [],
        'language_pairs_covered': [],
        'google_pairs_covered': [],
        'coverage_rate': [],
        
        # Detailed results
        'detailed_metrics': [],  # JSON string
        'validation_report': [],
        
        # Metadata
        'evaluation_date': [],
        'leaderboard_version': []
    }
    
    return pd.DataFrame(columns)

def load_leaderboard() -> pd.DataFrame:
    """Load current leaderboard from HuggingFace dataset."""
    
    try:
        print("Loading leaderboard...")
        dataset = load_dataset(LEADERBOARD_DATASET, split='train')
        df = dataset.to_pandas()
        
        # Ensure all required columns exist
        required_columns = list(initialize_leaderboard().columns)
        for col in required_columns:
            if col not in df.columns:
                if col in ['quality_score', 'bleu', 'chrf', 'rouge1', 'rouge2', 'rougeL', 
                          'cer', 'wer', 'len_ratio', 'google_quality_score', 'google_bleu', 
                          'google_chrf', 'total_samples', 'language_pairs_covered', 
                          'google_pairs_covered', 'coverage_rate']:
                    df[col] = 0.0
                elif col in ['leaderboard_version']:
                    df[col] = 1
                else:
                    df[col] = ''
        
        print(f"Loaded leaderboard with {len(df)} entries")
        return df
        
    except Exception as e:
        print(f"Could not load leaderboard: {e}")
        print("Initializing empty leaderboard...")
        return initialize_leaderboard()

def save_leaderboard(df: pd.DataFrame) -> bool:
    """Save leaderboard to HuggingFace dataset."""
    
    try:
        # Clean data before saving
        df_clean = df.copy()
        
        # Ensure numeric columns are proper types
        numeric_columns = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rouge2', 'rougeL',
                          'cer', 'wer', 'len_ratio', 'google_quality_score', 'google_bleu',
                          'google_chrf', 'total_samples', 'language_pairs_covered',
                          'google_pairs_covered', 'coverage_rate', 'leaderboard_version']
        
        for col in numeric_columns:
            if col in df_clean.columns:
                df_clean[col] = pd.to_numeric(df_clean[col], errors='coerce').fillna(0.0)
        
        # Convert to dataset
        dataset = Dataset.from_pandas(df_clean)
        
        # Push to hub
        dataset.push_to_hub(
            LEADERBOARD_DATASET,
            token=HF_TOKEN,
            commit_message=f"Update leaderboard - {datetime.datetime.now().isoformat()[:19]}"
        )
        
        print("Leaderboard saved successfully!")
        return True
        
    except Exception as e:
        print(f"Error saving leaderboard: {e}")
        return False

def add_model_to_leaderboard(
    model_name: str,
    author: str,
    evaluation_results: Dict,
    validation_info: Dict,
    model_type: str = "",
    description: str = ""
) -> pd.DataFrame:
    """
    Add new model results to leaderboard, with JSON-safe detailed_metrics.
    """
    # Load current leaderboard
    df = load_leaderboard()

    # Remove existing entry if present
    existing_mask = df['model_name'] == model_name
    if existing_mask.any():
        df = df[~existing_mask]

    # Safely serialize evaluation_results by dropping non-JSON types
    safe_results = evaluation_results.copy()
    # Remove sample_metrics DataFrame which isn't JSON serializable
    if 'sample_metrics' in safe_results:
        safe_results.pop('sample_metrics')

    detailed_json = json.dumps(safe_results)

    # Extract metrics
    averages = evaluation_results.get('averages', {})
    google_averages = evaluation_results.get('google_comparable_averages', {})
    summary = evaluation_results.get('summary', {})

    # Prepare new entry
    new_entry = {
        'submission_id': create_submission_id(),
        'model_name': sanitize_model_name(model_name),
        'author': author[:100] if author else 'Anonymous',
        'submission_date': datetime.datetime.now().isoformat(),
        'model_type': model_type[:50] if model_type else 'unknown',
        'description': description[:500] if description else '',

        # Primary metrics
        'quality_score': float(averages.get('quality_score', 0.0)),
        'bleu': float(averages.get('bleu', 0.0)),
        'chrf': float(averages.get('chrf', 0.0)),

        # Secondary metrics
        'rouge1': float(averages.get('rouge1', 0.0)),
        'rouge2': float(averages.get('rouge2', 0.0)),
        'rougeL': float(averages.get('rougeL', 0.0)),
        'cer': float(averages.get('cer', 0.0)),
        'wer': float(averages.get('wer', 0.0)),
        'len_ratio': float(averages.get('len_ratio', 0.0)),

        # Google comparable metrics
        'google_quality_score': float(google_averages.get('quality_score', 0.0)),
        'google_bleu': float(google_averages.get('bleu', 0.0)),
        'google_chrf': float(google_averages.get('chrf', 0.0)),

        # Coverage info
        'total_samples': int(summary.get('total_samples', 0)),
        'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
        'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
        'coverage_rate': float(validation_info.get('coverage', 0.0)),

        # Detailed results (JSON string)
        'detailed_metrics': detailed_json,
        'validation_report': validation_info.get('report', ''),

        # Metadata
        'evaluation_date': datetime.datetime.now().isoformat(),
        'leaderboard_version': 1
    }

    # Convert to DataFrame and append
    new_row_df = pd.DataFrame([new_entry])
    updated_df = pd.concat([df, new_row_df], ignore_index=True)
    updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)

    # Save to hub
    save_leaderboard(updated_df)

    return updated_df

def prepare_leaderboard_display(df: pd.DataFrame) -> pd.DataFrame:
    """Prepare leaderboard for display by formatting and selecting appropriate columns."""
    
    if df.empty:
        return df
    
    # Select columns for display (exclude detailed_metrics and validation_report)
    display_columns = [
        'model_name', 'author', 'submission_date', 'model_type',
        'quality_score', 'bleu', 'chrf', 
        'rouge1', 'rougeL',
        'total_samples', 'language_pairs_covered', 'google_pairs_covered',
        'coverage_rate'
    ]
    
    # Only include columns that exist
    available_columns = [col for col in display_columns if col in df.columns]
    display_df = df[available_columns].copy()
    
    # Format numeric columns
    numeric_format = {
        'quality_score': '{:.4f}',
        'bleu': '{:.2f}',
        'chrf': '{:.4f}',
        'rouge1': '{:.4f}',
        'rougeL': '{:.4f}',
        'coverage_rate': '{:.1%}',
    }
    
    for col, fmt in numeric_format.items():
        if col in display_df.columns:
            display_df[col] = display_df[col].apply(lambda x: fmt.format(float(x)) if pd.notnull(x) else "0.0000")
    
    # Format submission date
    if 'submission_date' in display_df.columns:
        display_df['submission_date'] = pd.to_datetime(display_df['submission_date']).dt.strftime('%Y-%m-%d %H:%M')
    
    # Rename columns for better display
    column_renames = {
        'model_name': 'Model Name',
        'author': 'Author', 
        'submission_date': 'Submitted',
        'model_type': 'Type',
        'quality_score': 'Quality Score',
        'bleu': 'BLEU',
        'chrf': 'ChrF',
        'rouge1': 'ROUGE-1',
        'rougeL': 'ROUGE-L',
        'total_samples': 'Samples',
        'language_pairs_covered': 'Lang Pairs',
        'google_pairs_covered': 'Google Pairs',
        'coverage_rate': 'Coverage'
    }
    
    display_df = display_df.rename(columns=column_renames)
    
    return display_df

def get_leaderboard_stats(df: pd.DataFrame) -> Dict:
    """Get summary statistics for the leaderboard."""
    
    if df.empty:
        return {
            'total_models': 0,
            'avg_quality_score': 0.0,
            'best_model': None,
            'latest_submission': None,
            'google_comparable_models': 0,
            'coverage_distribution': {},
            'language_pair_coverage': {}
        }
    
    # Basic stats
    stats = {
        'total_models': len(df),
        'avg_quality_score': float(df['quality_score'].mean()),
        'best_model': {
            'name': df.iloc[0]['model_name'],
            'score': float(df.iloc[0]['quality_score']),
            'author': df.iloc[0]['author']
        } if len(df) > 0 else None,
        'latest_submission': df['submission_date'].max() if len(df) > 0 else None
    }
    
    # Google comparable models
    stats['google_comparable_models'] = int((df['google_pairs_covered'] > 0).sum())
    
    # Coverage distribution
    coverage_bins = pd.cut(df['coverage_rate'], bins=[0, 0.5, 0.8, 0.95, 1.0], 
                          labels=['<50%', '50-80%', '80-95%', '95-100%'])
    stats['coverage_distribution'] = coverage_bins.value_counts().to_dict()
    
    # Language pair coverage
    if len(df) > 0:
        stats['avg_pairs_covered'] = float(df['language_pairs_covered'].mean())
        stats['max_pairs_covered'] = int(df['language_pairs_covered'].max())
        stats['total_possible_pairs'] = len(get_all_language_pairs())
    
    return stats

def filter_leaderboard(
    df: pd.DataFrame,
    search_query: str = "",
    model_type: str = "",
    min_coverage: float = 0.0,
    google_comparable_only: bool = False,
    top_n: int = None
) -> pd.DataFrame:
    """Filter leaderboard based on various criteria."""
    
    filtered_df = df.copy()
    
    # Text search
    if search_query:
        query_lower = search_query.lower()
        mask = (
            filtered_df['model_name'].str.lower().str.contains(query_lower, na=False) |
            filtered_df['author'].str.lower().str.contains(query_lower, na=False) |
            filtered_df['description'].str.lower().str.contains(query_lower, na=False)
        )
        filtered_df = filtered_df[mask]
    
    # Model type filter
    if model_type and model_type != "all":
        filtered_df = filtered_df[filtered_df['model_type'] == model_type]
    
    # Coverage filter
    if min_coverage > 0:
        filtered_df = filtered_df[filtered_df['coverage_rate'] >= min_coverage]
    
    # Google comparable filter
    if google_comparable_only:
        filtered_df = filtered_df[filtered_df['google_pairs_covered'] > 0]
    
    # Top N filter
    if top_n:
        filtered_df = filtered_df.head(top_n)
    
    return filtered_df

def get_model_comparison(df: pd.DataFrame, model_names: List[str]) -> Dict:
    """Get detailed comparison between specific models."""
    
    models = df[df['model_name'].isin(model_names)]
    
    if len(models) == 0:
        return {'error': 'No models found'}
    
    comparison = {
        'models': [],
        'metrics_comparison': {},
        'detailed_results': {}
    }
    
    # Extract basic info for each model
    for _, model in models.iterrows():
        comparison['models'].append({
            'name': model['model_name'],
            'author': model['author'],
            'submission_date': model['submission_date'],
            'model_type': model['model_type']
        })
        
        # Parse detailed metrics if available
        try:
            detailed = json.loads(model['detailed_metrics'])
            comparison['detailed_results'][model['model_name']] = detailed
        except:
            comparison['detailed_results'][model['model_name']] = {}
    
    # Compare metrics
    metrics = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL', 'cer', 'wer']
    for metric in metrics:
        if metric in models.columns:
            comparison['metrics_comparison'][metric] = {
                model_name: float(score) 
                for model_name, score in zip(models['model_name'], models[metric])
            }
    
    return comparison

def export_leaderboard(df: pd.DataFrame, format: str = 'csv', include_detailed: bool = False) -> str:
    """Export leaderboard in specified format."""
    
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    
    # Select columns for export
    if include_detailed:
        export_df = df.copy()
    else:
        basic_columns = [
            'model_name', 'author', 'submission_date', 'model_type',
            'quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL',
            'total_samples', 'language_pairs_covered', 'coverage_rate'
        ]
        export_df = df[basic_columns].copy()
    
    if format == 'csv':
        filename = f"salt_leaderboard_{timestamp}.csv"
        export_df.to_csv(filename, index=False)
    elif format == 'json':
        filename = f"salt_leaderboard_{timestamp}.json"
        export_df.to_json(filename, orient='records', indent=2)
    elif format == 'xlsx':
        filename = f"salt_leaderboard_{timestamp}.xlsx"
        export_df.to_excel(filename, index=False)
    else:
        raise ValueError(f"Unsupported format: {format}")
    
    return filename

def get_ranking_history(df: pd.DataFrame, model_name: str) -> Dict:
    """Get ranking history for a specific model (if multiple submissions)."""
    
    model_entries = df[df['model_name'] == model_name].sort_values('submission_date')
    
    if len(model_entries) == 0:
        return {'error': 'Model not found'}
    
    history = []
    for _, entry in model_entries.iterrows():
        # Calculate rank at time of submission
        submission_date = entry['submission_date']
        historical_df = df[df['submission_date'] <= submission_date]
        rank = (historical_df['quality_score'] > entry['quality_score']).sum() + 1
        
        history.append({
            'submission_date': submission_date,
            'quality_score': float(entry['quality_score']),
            'rank': int(rank),
            'total_models': len(historical_df)
        })
    
    return {
        'model_name': model_name,
        'history': history,
        'current_rank': history[-1]['rank'] if history else None
    }