Spaces:
Sleeping
Sleeping
File size: 15,374 Bytes
944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 24ebdcb 944a871 796d1cd 944a871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# src/leaderboard.py
import pandas as pd
from datasets import Dataset, load_dataset
import json
import datetime
from typing import Dict, List, Optional, Tuple
import os
from config import LEADERBOARD_DATASET, HF_TOKEN, ALL_UG40_LANGUAGES, GOOGLE_SUPPORTED_LANGUAGES
from src.utils import create_submission_id, sanitize_model_name, get_all_language_pairs, get_google_comparable_pairs
def initialize_leaderboard() -> pd.DataFrame:
"""Initialize empty leaderboard DataFrame."""
columns = {
'submission_id': [],
'model_name': [],
'author': [],
'submission_date': [],
'model_type': [],
'description': [],
# Primary metrics
'quality_score': [],
'bleu': [],
'chrf': [],
# Secondary metrics
'rouge1': [],
'rouge2': [],
'rougeL': [],
'cer': [],
'wer': [],
'len_ratio': [],
# Google comparable metrics
'google_quality_score': [],
'google_bleu': [],
'google_chrf': [],
# Coverage info
'total_samples': [],
'language_pairs_covered': [],
'google_pairs_covered': [],
'coverage_rate': [],
# Detailed results
'detailed_metrics': [], # JSON string
'validation_report': [],
# Metadata
'evaluation_date': [],
'leaderboard_version': []
}
return pd.DataFrame(columns)
def load_leaderboard() -> pd.DataFrame:
"""Load current leaderboard from HuggingFace dataset."""
try:
print("Loading leaderboard...")
dataset = load_dataset(LEADERBOARD_DATASET, split='train')
df = dataset.to_pandas()
# Ensure all required columns exist
required_columns = list(initialize_leaderboard().columns)
for col in required_columns:
if col not in df.columns:
if col in ['quality_score', 'bleu', 'chrf', 'rouge1', 'rouge2', 'rougeL',
'cer', 'wer', 'len_ratio', 'google_quality_score', 'google_bleu',
'google_chrf', 'total_samples', 'language_pairs_covered',
'google_pairs_covered', 'coverage_rate']:
df[col] = 0.0
elif col in ['leaderboard_version']:
df[col] = 1
else:
df[col] = ''
print(f"Loaded leaderboard with {len(df)} entries")
return df
except Exception as e:
print(f"Could not load leaderboard: {e}")
print("Initializing empty leaderboard...")
return initialize_leaderboard()
def save_leaderboard(df: pd.DataFrame) -> bool:
"""Save leaderboard to HuggingFace dataset."""
try:
# Clean data before saving
df_clean = df.copy()
# Ensure numeric columns are proper types
numeric_columns = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rouge2', 'rougeL',
'cer', 'wer', 'len_ratio', 'google_quality_score', 'google_bleu',
'google_chrf', 'total_samples', 'language_pairs_covered',
'google_pairs_covered', 'coverage_rate', 'leaderboard_version']
for col in numeric_columns:
if col in df_clean.columns:
df_clean[col] = pd.to_numeric(df_clean[col], errors='coerce').fillna(0.0)
# Convert to dataset
dataset = Dataset.from_pandas(df_clean)
# Push to hub
dataset.push_to_hub(
LEADERBOARD_DATASET,
token=HF_TOKEN,
commit_message=f"Update leaderboard - {datetime.datetime.now().isoformat()[:19]}"
)
print("Leaderboard saved successfully!")
return True
except Exception as e:
print(f"Error saving leaderboard: {e}")
return False
def add_model_to_leaderboard(
model_name: str,
author: str,
evaluation_results: Dict,
validation_info: Dict,
model_type: str = "",
description: str = ""
) -> pd.DataFrame:
"""
Add new model results to leaderboard, with JSON-safe detailed_metrics.
"""
# Load current leaderboard
df = load_leaderboard()
# Remove existing entry if present
existing_mask = df['model_name'] == model_name
if existing_mask.any():
df = df[~existing_mask]
# Safely serialize evaluation_results by dropping non-JSON types
safe_results = evaluation_results.copy()
# Remove sample_metrics DataFrame which isn't JSON serializable
if 'sample_metrics' in safe_results:
safe_results.pop('sample_metrics')
detailed_json = json.dumps(safe_results)
# Extract metrics
averages = evaluation_results.get('averages', {})
google_averages = evaluation_results.get('google_comparable_averages', {})
summary = evaluation_results.get('summary', {})
# Prepare new entry
new_entry = {
'submission_id': create_submission_id(),
'model_name': sanitize_model_name(model_name),
'author': author[:100] if author else 'Anonymous',
'submission_date': datetime.datetime.now().isoformat(),
'model_type': model_type[:50] if model_type else 'unknown',
'description': description[:500] if description else '',
# Primary metrics
'quality_score': float(averages.get('quality_score', 0.0)),
'bleu': float(averages.get('bleu', 0.0)),
'chrf': float(averages.get('chrf', 0.0)),
# Secondary metrics
'rouge1': float(averages.get('rouge1', 0.0)),
'rouge2': float(averages.get('rouge2', 0.0)),
'rougeL': float(averages.get('rougeL', 0.0)),
'cer': float(averages.get('cer', 0.0)),
'wer': float(averages.get('wer', 0.0)),
'len_ratio': float(averages.get('len_ratio', 0.0)),
# Google comparable metrics
'google_quality_score': float(google_averages.get('quality_score', 0.0)),
'google_bleu': float(google_averages.get('bleu', 0.0)),
'google_chrf': float(google_averages.get('chrf', 0.0)),
# Coverage info
'total_samples': int(summary.get('total_samples', 0)),
'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
'coverage_rate': float(validation_info.get('coverage', 0.0)),
# Detailed results (JSON string)
'detailed_metrics': detailed_json,
'validation_report': validation_info.get('report', ''),
# Metadata
'evaluation_date': datetime.datetime.now().isoformat(),
'leaderboard_version': 1
}
# Convert to DataFrame and append
new_row_df = pd.DataFrame([new_entry])
updated_df = pd.concat([df, new_row_df], ignore_index=True)
updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)
# Save to hub
save_leaderboard(updated_df)
return updated_df
def prepare_leaderboard_display(df: pd.DataFrame) -> pd.DataFrame:
"""Prepare leaderboard for display by formatting and selecting appropriate columns."""
if df.empty:
return df
# Select columns for display (exclude detailed_metrics and validation_report)
display_columns = [
'model_name', 'author', 'submission_date', 'model_type',
'quality_score', 'bleu', 'chrf',
'rouge1', 'rougeL',
'total_samples', 'language_pairs_covered', 'google_pairs_covered',
'coverage_rate'
]
# Only include columns that exist
available_columns = [col for col in display_columns if col in df.columns]
display_df = df[available_columns].copy()
# Format numeric columns
numeric_format = {
'quality_score': '{:.4f}',
'bleu': '{:.2f}',
'chrf': '{:.4f}',
'rouge1': '{:.4f}',
'rougeL': '{:.4f}',
'coverage_rate': '{:.1%}',
}
for col, fmt in numeric_format.items():
if col in display_df.columns:
display_df[col] = display_df[col].apply(lambda x: fmt.format(float(x)) if pd.notnull(x) else "0.0000")
# Format submission date
if 'submission_date' in display_df.columns:
display_df['submission_date'] = pd.to_datetime(display_df['submission_date']).dt.strftime('%Y-%m-%d %H:%M')
# Rename columns for better display
column_renames = {
'model_name': 'Model Name',
'author': 'Author',
'submission_date': 'Submitted',
'model_type': 'Type',
'quality_score': 'Quality Score',
'bleu': 'BLEU',
'chrf': 'ChrF',
'rouge1': 'ROUGE-1',
'rougeL': 'ROUGE-L',
'total_samples': 'Samples',
'language_pairs_covered': 'Lang Pairs',
'google_pairs_covered': 'Google Pairs',
'coverage_rate': 'Coverage'
}
display_df = display_df.rename(columns=column_renames)
return display_df
def get_leaderboard_stats(df: pd.DataFrame) -> Dict:
"""Get summary statistics for the leaderboard."""
if df.empty:
return {
'total_models': 0,
'avg_quality_score': 0.0,
'best_model': None,
'latest_submission': None,
'google_comparable_models': 0,
'coverage_distribution': {},
'language_pair_coverage': {}
}
# Basic stats
stats = {
'total_models': len(df),
'avg_quality_score': float(df['quality_score'].mean()),
'best_model': {
'name': df.iloc[0]['model_name'],
'score': float(df.iloc[0]['quality_score']),
'author': df.iloc[0]['author']
} if len(df) > 0 else None,
'latest_submission': df['submission_date'].max() if len(df) > 0 else None
}
# Google comparable models
stats['google_comparable_models'] = int((df['google_pairs_covered'] > 0).sum())
# Coverage distribution
coverage_bins = pd.cut(df['coverage_rate'], bins=[0, 0.5, 0.8, 0.95, 1.0],
labels=['<50%', '50-80%', '80-95%', '95-100%'])
stats['coverage_distribution'] = coverage_bins.value_counts().to_dict()
# Language pair coverage
if len(df) > 0:
stats['avg_pairs_covered'] = float(df['language_pairs_covered'].mean())
stats['max_pairs_covered'] = int(df['language_pairs_covered'].max())
stats['total_possible_pairs'] = len(get_all_language_pairs())
return stats
def filter_leaderboard(
df: pd.DataFrame,
search_query: str = "",
model_type: str = "",
min_coverage: float = 0.0,
google_comparable_only: bool = False,
top_n: int = None
) -> pd.DataFrame:
"""Filter leaderboard based on various criteria."""
filtered_df = df.copy()
# Text search
if search_query:
query_lower = search_query.lower()
mask = (
filtered_df['model_name'].str.lower().str.contains(query_lower, na=False) |
filtered_df['author'].str.lower().str.contains(query_lower, na=False) |
filtered_df['description'].str.lower().str.contains(query_lower, na=False)
)
filtered_df = filtered_df[mask]
# Model type filter
if model_type and model_type != "all":
filtered_df = filtered_df[filtered_df['model_type'] == model_type]
# Coverage filter
if min_coverage > 0:
filtered_df = filtered_df[filtered_df['coverage_rate'] >= min_coverage]
# Google comparable filter
if google_comparable_only:
filtered_df = filtered_df[filtered_df['google_pairs_covered'] > 0]
# Top N filter
if top_n:
filtered_df = filtered_df.head(top_n)
return filtered_df
def get_model_comparison(df: pd.DataFrame, model_names: List[str]) -> Dict:
"""Get detailed comparison between specific models."""
models = df[df['model_name'].isin(model_names)]
if len(models) == 0:
return {'error': 'No models found'}
comparison = {
'models': [],
'metrics_comparison': {},
'detailed_results': {}
}
# Extract basic info for each model
for _, model in models.iterrows():
comparison['models'].append({
'name': model['model_name'],
'author': model['author'],
'submission_date': model['submission_date'],
'model_type': model['model_type']
})
# Parse detailed metrics if available
try:
detailed = json.loads(model['detailed_metrics'])
comparison['detailed_results'][model['model_name']] = detailed
except:
comparison['detailed_results'][model['model_name']] = {}
# Compare metrics
metrics = ['quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL', 'cer', 'wer']
for metric in metrics:
if metric in models.columns:
comparison['metrics_comparison'][metric] = {
model_name: float(score)
for model_name, score in zip(models['model_name'], models[metric])
}
return comparison
def export_leaderboard(df: pd.DataFrame, format: str = 'csv', include_detailed: bool = False) -> str:
"""Export leaderboard in specified format."""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Select columns for export
if include_detailed:
export_df = df.copy()
else:
basic_columns = [
'model_name', 'author', 'submission_date', 'model_type',
'quality_score', 'bleu', 'chrf', 'rouge1', 'rougeL',
'total_samples', 'language_pairs_covered', 'coverage_rate'
]
export_df = df[basic_columns].copy()
if format == 'csv':
filename = f"salt_leaderboard_{timestamp}.csv"
export_df.to_csv(filename, index=False)
elif format == 'json':
filename = f"salt_leaderboard_{timestamp}.json"
export_df.to_json(filename, orient='records', indent=2)
elif format == 'xlsx':
filename = f"salt_leaderboard_{timestamp}.xlsx"
export_df.to_excel(filename, index=False)
else:
raise ValueError(f"Unsupported format: {format}")
return filename
def get_ranking_history(df: pd.DataFrame, model_name: str) -> Dict:
"""Get ranking history for a specific model (if multiple submissions)."""
model_entries = df[df['model_name'] == model_name].sort_values('submission_date')
if len(model_entries) == 0:
return {'error': 'Model not found'}
history = []
for _, entry in model_entries.iterrows():
# Calculate rank at time of submission
submission_date = entry['submission_date']
historical_df = df[df['submission_date'] <= submission_date]
rank = (historical_df['quality_score'] > entry['quality_score']).sum() + 1
history.append({
'submission_date': submission_date,
'quality_score': float(entry['quality_score']),
'rank': int(rank),
'total_models': len(historical_df)
})
return {
'model_name': model_name,
'history': history,
'current_rank': history[-1]['rank'] if history else None
} |