Spaces:
Sleeping
Sleeping
File size: 11,870 Bytes
aecc3e1 57c7739 c1926c2 57c7739 cc0d353 c0c3e37 c1926c2 57c7739 c1926c2 57c7739 aecc3e1 8003b5b aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 c1926c2 57c7739 c1926c2 aecc3e1 57c7739 c1926c2 aecc3e1 57c7739 8003b5b 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 c1926c2 57c7739 c1926c2 aecc3e1 57c7739 c1926c2 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 c1926c2 aecc3e1 c1926c2 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 57c7739 aecc3e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# src/test_set.py
import os
import pandas as pd
import yaml
from datasets import load_dataset
from config import (
TEST_SET_DATASET,
SALT_DATASET,
MAX_TEST_SAMPLES,
HF_TOKEN,
MIN_SAMPLES_PER_PAIR,
ALL_UG40_LANGUAGES,
GOOGLE_SUPPORTED_LANGUAGES
)
import salt.dataset
from src.utils import get_all_language_pairs
# Local CSV filenames for persistence
LOCAL_PUBLIC_CSV = "salt_test_set.csv"
LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv"
def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame:
"""
Generate standardized test set from the SALT dataset.
"""
print("π Generating SALT test set from source dataset...")
try:
# Build SALT dataset config - using 'test' split for consistency
dataset_config = f'''
huggingface_load:
path: {SALT_DATASET}
name: text-all
split: test
source:
type: text
language: {ALL_UG40_LANGUAGES}
target:
type: text
language: {ALL_UG40_LANGUAGES}
allow_same_src_and_tgt_language: False
'''
config = yaml.safe_load(dataset_config)
print("π₯ Loading SALT dataset...")
full_data = pd.DataFrame(salt.dataset.create(config))
print(f"π Loaded {len(full_data):,} samples from SALT dataset")
test_samples = []
sample_id_counter = 1
# Generate samples for each language pair
for src_lang in ALL_UG40_LANGUAGES:
for tgt_lang in ALL_UG40_LANGUAGES:
if src_lang == tgt_lang:
continue
# Filter for this language pair
pair_data = full_data[
(full_data['source.language'] == src_lang) &
(full_data['target.language'] == tgt_lang)
]
if pair_data.empty:
print(f"β οΈ No data found for {src_lang} β {tgt_lang}")
continue
# Sample up to max_samples_per_pair
n_samples = min(len(pair_data), max_samples_per_pair)
sampled = pair_data.sample(n=n_samples, random_state=42)
print(f"β
{src_lang} β {tgt_lang}: {n_samples} samples")
for _, row in sampled.iterrows():
test_samples.append({
'sample_id': f"salt_{sample_id_counter:06d}",
'source_text': row['source'],
'target_text': row['target'],
'source_language': src_lang,
'target_language': tgt_lang,
'domain': row.get('domain', 'general'),
'google_comparable': (
src_lang in GOOGLE_SUPPORTED_LANGUAGES and
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES
)
})
sample_id_counter += 1
test_df = pd.DataFrame(test_samples)
if test_df.empty:
raise ValueError("No test samples generated - check SALT dataset availability")
print(f"β
Generated test set: {len(test_df):,} samples across {len(test_df.groupby(['source_language', 'target_language'])):,} pairs")
# Add some statistics
google_samples = test_df['google_comparable'].sum()
unique_pairs = len(test_df.groupby(['source_language', 'target_language']))
print(f"π Test set statistics:")
print(f" - Total samples: {len(test_df):,}")
print(f" - Language pairs: {unique_pairs}")
print(f" - Google comparable: {google_samples:,} samples")
print(f" - UG40 only: {len(test_df) - google_samples:,} samples")
return test_df
except Exception as e:
print(f"β Error generating test set: {e}")
# Return empty DataFrame with correct structure
return pd.DataFrame(columns=[
'sample_id', 'source_text', 'target_text', 'source_language',
'target_language', 'domain', 'google_comparable'
])
def _generate_and_save_test_set() -> tuple[pd.DataFrame, pd.DataFrame]:
"""
Generate the full test set and persist both public and complete CSV files.
"""
print("π Generating and saving test sets...")
full_df = generate_test_set()
if full_df.empty:
print("β Failed to generate test set")
# Return empty DataFrames with correct structure
empty_public = pd.DataFrame(columns=[
'sample_id', 'source_text', 'source_language',
'target_language', 'domain', 'google_comparable'
])
empty_complete = pd.DataFrame(columns=[
'sample_id', 'source_text', 'target_text', 'source_language',
'target_language', 'domain', 'google_comparable'
])
return empty_public, empty_complete
# Public version (no target_text)
public_df = full_df[[
'sample_id', 'source_text', 'source_language',
'target_language', 'domain', 'google_comparable'
]].copy()
# Save both versions
try:
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False)
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False)
print(f"β
Saved local CSVs: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}")
except Exception as e:
print(f"β οΈ Error saving CSVs: {e}")
return public_df, full_df
def get_public_test_set() -> pd.DataFrame:
"""
Load the public test set (without targets).
Tries HF Hub β local CSV β regenerate.
"""
# 1) Try HF Hub
try:
print("π₯ Attempting to load public test set from HF Hub...")
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN)
df = ds.to_pandas()
print(f"β
Loaded public test set from HF Hub ({len(df):,} samples)")
return df
except Exception as e:
print(f"β οΈ HF Hub load failed: {e}")
# 2) Try local CSV
if os.path.exists(LOCAL_PUBLIC_CSV):
try:
df = pd.read_csv(LOCAL_PUBLIC_CSV)
print(f"β
Loaded public test set from local CSV ({len(df):,} samples)")
# Validate basic structure
required_cols = ['sample_id', 'source_text', 'source_language', 'target_language']
if all(col in df.columns for col in required_cols):
return df
else:
print("β οΈ Local CSV has invalid structure, regenerating...")
except Exception as e:
print(f"β οΈ Failed to read local CSV: {e}")
# 3) Regenerate & save
print("π Generating new public test set...")
public_df, _ = _generate_and_save_test_set()
return public_df
def get_complete_test_set() -> pd.DataFrame:
"""
Load the complete test set (with targets).
Tries HF Hub-private β local CSV β regenerate.
"""
# 1) Try HF Hub private
try:
print("π₯ Attempting to load complete test set from HF Hub-private...")
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN)
df = ds.to_pandas()
print(f"β
Loaded complete test set from HF Hub-private ({len(df):,} samples)")
return df
except Exception as e:
print(f"β οΈ HF Hub-private load failed: {e}")
# 2) Try local CSV
if os.path.exists(LOCAL_COMPLETE_CSV):
try:
df = pd.read_csv(LOCAL_COMPLETE_CSV)
print(f"β
Loaded complete test set from local CSV ({len(df):,} samples)")
# Validate basic structure
required_cols = ['sample_id', 'source_text', 'target_text', 'source_language', 'target_language']
if all(col in df.columns for col in required_cols):
return df
else:
print("β οΈ Local CSV has invalid structure, regenerating...")
except Exception as e:
print(f"β οΈ Failed to read local complete CSV: {e}")
# 3) Regenerate & save
print("π Generating new complete test set...")
_, complete_df = _generate_and_save_test_set()
return complete_df
def create_test_set_download() -> tuple[str, dict]:
"""
Create a CSV download of the public test set and return its path + stats.
"""
public_df = get_public_test_set()
if public_df.empty:
# Create minimal stats for empty dataset
stats = {
'total_samples': 0,
'language_pairs': 0,
'google_comparable_samples': 0,
'languages': [],
'domains': []
}
return LOCAL_PUBLIC_CSV, stats
download_path = LOCAL_PUBLIC_CSV
# Ensure the CSV is up-to-date
try:
public_df.to_csv(download_path, index=False)
except Exception as e:
print(f"β οΈ Error updating CSV: {e}")
# Calculate statistics
try:
stats = {
'total_samples': len(public_df),
'language_pairs': len(public_df.groupby(['source_language', 'target_language'])),
'google_comparable_samples': int(public_df['google_comparable'].sum()) if 'google_comparable' in public_df.columns else 0,
'languages': sorted(list(set(public_df['source_language']).union(public_df['target_language']))),
'domains': public_df['domain'].unique().tolist() if 'domain' in public_df.columns else ['general']
}
except Exception as e:
print(f"β οΈ Error calculating stats: {e}")
stats = {
'total_samples': len(public_df),
'language_pairs': 0,
'google_comparable_samples': 0,
'languages': [],
'domains': []
}
return download_path, stats
def validate_test_set_integrity() -> dict:
"""
Validate test set coverage and integrity.
"""
try:
public_df = get_public_test_set()
complete_df = get_complete_test_set()
if public_df.empty or complete_df.empty:
return {
'alignment_check': False,
'total_samples': 0,
'coverage_by_pair': {},
'missing_pairs': [],
'error': 'Test sets are empty or could not be loaded'
}
public_ids = set(public_df['sample_id'])
private_ids = set(complete_df['sample_id'])
coverage_by_pair = {}
for src in ALL_UG40_LANGUAGES:
for tgt in ALL_UG40_LANGUAGES:
if src == tgt:
continue
subset = public_df[
(public_df['source_language'] == src) &
(public_df['target_language'] == tgt)
]
count = len(subset)
coverage_by_pair[f"{src}_{tgt}"] = {
'count': count,
'has_samples': count >= MIN_SAMPLES_PER_PAIR
}
return {
'alignment_check': public_ids <= private_ids,
'total_samples': len(public_df),
'coverage_by_pair': coverage_by_pair,
'missing_pairs': [k for k, v in coverage_by_pair.items() if not v['has_samples']],
'public_samples': len(public_df),
'private_samples': len(complete_df),
'id_alignment_rate': len(public_ids & private_ids) / len(public_ids) if public_ids else 0.0
}
except Exception as e:
return {
'alignment_check': False,
'total_samples': 0,
'coverage_by_pair': {},
'missing_pairs': [],
'error': f'Validation failed: {str(e)}'
} |