Spaces:
Running
Running
File size: 12,259 Bytes
1abade4 b78ec70 a411078 b78ec70 a411078 b78ec70 a411078 fb1cc27 a411078 b78ec70 fa045d5 b78ec70 a411078 b78ec70 1abade4 a411078 1abade4 a411078 b78ec70 aa9fced fa045d5 fb1cc27 b78ec70 a411078 fa045d5 a411078 fa045d5 a411078 fb1cc27 fa045d5 fb1cc27 a411078 fb1cc27 fa045d5 b78ec70 a411078 aa9fced fa045d5 fb1cc27 fa045d5 aa9fced fb1cc27 a411078 aa9fced a411078 aa9fced a411078 fa045d5 aa9fced fa045d5 aa9fced fb1cc27 fa045d5 b78ec70 a411078 aa9fced fa045d5 aa9fced a411078 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced a411078 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fa045d5 a411078 aa9fced fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 aa9fced fb1cc27 a411078 fb1cc27 aa9fced a411078 fb1cc27 aa9fced a411078 aa9fced a411078 fb1cc27 a411078 aa9fced a411078 aa9fced fb1cc27 aa9fced fa045d5 a411078 aa9fced fa045d5 a411078 aa9fced fa045d5 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fb1cc27 aa9fced fa045d5 a411078 aa9fced fb1cc27 a411078 fa045d5 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 a411078 b78ec70 fb1cc27 a411078 fb1cc27 a411078 fb1cc27 aa9fced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# src/utils.py
import re
import datetime
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple, Set, Optional, Union
from config import (
ALL_UG40_LANGUAGES,
GOOGLE_SUPPORTED_LANGUAGES,
LANGUAGE_NAMES,
EVALUATION_TRACKS,
MODEL_CATEGORIES,
METRICS_CONFIG,
)
def get_all_language_pairs() -> List[Tuple[str, str]]:
"""Get all possible UG40 language pairs."""
pairs = []
for src in ALL_UG40_LANGUAGES:
for tgt in ALL_UG40_LANGUAGES:
if src != tgt:
pairs.append((src, tgt))
return pairs
def get_google_comparable_pairs() -> List[Tuple[str, str]]:
"""Get language pairs that can be compared with Google Translate."""
pairs = []
for src in GOOGLE_SUPPORTED_LANGUAGES:
for tgt in GOOGLE_SUPPORTED_LANGUAGES:
if src != tgt:
pairs.append((src, tgt))
return pairs
def get_track_language_pairs(track: str) -> List[Tuple[str, str]]:
"""Get language pairs for a specific evaluation track."""
if track not in EVALUATION_TRACKS:
return []
track_languages = EVALUATION_TRACKS[track]["languages"]
pairs = []
for src in track_languages:
for tgt in track_languages:
if src != tgt:
pairs.append((src, tgt))
return pairs
def format_language_pair(src: str, tgt: str) -> str:
"""Format language pair for display."""
src_name = LANGUAGE_NAMES.get(src, src.upper())
tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
return f"{src_name} → {tgt_name}"
def validate_language_code(lang: str) -> bool:
"""Validate if language code is supported."""
return lang in ALL_UG40_LANGUAGES
def create_submission_id() -> str:
"""Create unique submission ID with timestamp and random component."""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = str(np.random.randint(1000, 9999))
return f"sub_{timestamp}_{random_suffix}"
def sanitize_model_name(name: str) -> str:
"""Sanitize model name for display and storage."""
if not name or not isinstance(name, str):
return "Anonymous_Model"
# Remove special characters, limit length
name = re.sub(r"[^\w\-.]", "_", name.strip())
# Remove multiple consecutive underscores
name = re.sub(r"_+", "_", name)
# Remove leading/trailing underscores
name = name.strip("_")
# Ensure minimum length
if len(name) < 3:
name = f"Model_{name}"
# Check for reserved names
reserved_names = ["admin", "test", "baseline", "google", "system"]
if name.lower() in reserved_names:
name = f"User_{name}"
return name[:50] # Limit to 50 characters
def format_metric_value(value: float, metric: str, precision: int = None) -> str:
"""Format metric value for display."""
if pd.isna(value) or value is None:
return "N/A"
try:
if precision is None:
precision = METRICS_CONFIG["display_precision"]
if metric == "coverage_rate":
return f"{value:.1%}"
elif metric in ["bleu"]:
return f"{value:.2f}"
elif metric in ["cer", "wer"] and value > 1:
# Cap error rates at 1.0 for display
return f"{min(value, 1.0):.{precision}f}"
else:
return f"{value:.{precision}f}"
except (ValueError, TypeError):
return str(value)
def safe_divide(numerator: float, denominator: float, default: float = 0.0) -> float:
"""Safely divide two numbers, handling edge cases."""
try:
if denominator == 0 or pd.isna(denominator) or pd.isna(numerator):
return default
result = numerator / denominator
if pd.isna(result) or not np.isfinite(result):
return default
return float(result)
except (TypeError, ValueError, ZeroDivisionError):
return default
def clean_text_for_evaluation(text: str) -> str:
"""Clean text for evaluation, handling common encoding issues."""
if not isinstance(text, str):
return str(text) if text is not None else ""
# Remove extra whitespace
text = re.sub(r"\s+", " ", text.strip())
# Handle common encoding issues
text = text.replace("\u00a0", " ") # Non-breaking space
text = text.replace("\u2019", "'") # Right single quotation mark
text = text.replace("\u201c", '"') # Left double quotation mark
text = text.replace("\u201d", '"') # Right double quotation mark
return text
def validate_dataframe_structure(
df: pd.DataFrame, required_columns: List[str], track: str = None
) -> Tuple[bool, List[str]]:
"""Validate DataFrame structure."""
if df.empty:
return False, ["DataFrame is empty"]
issues = []
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
issues.append(f"Missing columns: {', '.join(missing_columns)}")
# Check data types
if "sample_id" in df.columns:
if not df["sample_id"].dtype == "object":
try:
df["sample_id"] = df["sample_id"].astype(str)
except Exception:
issues.append("Cannot convert sample_id to string")
return len(issues) == 0, issues
def calculate_track_coverage(predictions: pd.DataFrame, test_set: pd.DataFrame, track: str) -> Dict:
"""Calculate coverage statistics for a specific track."""
if track not in EVALUATION_TRACKS:
return {"error": f"Unknown track: {track}"}
track_config = EVALUATION_TRACKS[track]
track_languages = track_config["languages"]
# Filter test set to track languages
track_test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
]
if track_test_set.empty:
return {"error": f"No test data available for {track} track"}
# Calculate coverage
pred_ids = set(predictions["sample_id"].astype(str))
test_ids = set(track_test_set["sample_id"].astype(str))
matching_ids = pred_ids & test_ids
coverage_rate = len(matching_ids) / len(test_ids)
# Analyze by language pair
pair_analysis = {}
for src in track_languages:
for tgt in track_languages:
if src == tgt:
continue
pair_test_data = track_test_set[
(track_test_set["source_language"] == src) &
(track_test_set["target_language"] == tgt)
]
if len(pair_test_data) > 0:
pair_test_ids = set(pair_test_data["sample_id"].astype(str))
pair_matching = pred_ids & pair_test_ids
pair_analysis[f"{src}_to_{tgt}"] = {
"total": len(pair_test_data),
"covered": len(pair_matching),
"coverage_rate": len(pair_matching) / len(pair_test_data),
}
return {
"track_name": track_config["name"],
"total_samples": len(track_test_set),
"covered_samples": len(matching_ids),
"coverage_rate": coverage_rate,
"pair_analysis": pair_analysis,
}
def generate_model_identifier(model_name: str, author: str, category: str) -> str:
"""Generate a unique identifier for a model."""
clean_name = sanitize_model_name(model_name)
clean_author = re.sub(r"[^\w\-]", "_", author.strip())[:20] if author else "Anonymous"
clean_category = category[:10] if category in MODEL_CATEGORIES else "community"
timestamp = datetime.datetime.now().strftime("%m%d_%H%M")
return f"{clean_category}_{clean_name}_{clean_author}_{timestamp}"
def format_duration(seconds: float) -> str:
"""Format duration in seconds to human-readable format."""
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
return f"{seconds/60:.1f}m"
else:
return f"{seconds/3600:.1f}h"
def truncate_text(text: str, max_length: int = 100, suffix: str = "...") -> str:
"""Truncate text to specified length with suffix."""
if not isinstance(text, str):
text = str(text)
if len(text) <= max_length:
return text
return text[: max_length - len(suffix)] + suffix
def get_language_pair_display_name(src: str, tgt: str) -> str:
"""Get display name for a language pair."""
src_name = LANGUAGE_NAMES.get(src, src.upper())
tgt_name = LANGUAGE_NAMES.get(tgt, tgt.upper())
return f"{src_name} → {tgt_name}"
def validate_submission_completeness(
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str = None
) -> Dict:
"""Validate submission completeness."""
if predictions.empty or test_set.empty:
return {
"is_complete": False,
"missing_count": len(test_set) if not test_set.empty else 0,
"extra_count": len(predictions) if not predictions.empty else 0,
"missing_ids": [],
"coverage": 0.0,
}
# If track specified, filter to track languages
if track and track in EVALUATION_TRACKS:
track_languages = EVALUATION_TRACKS[track]["languages"]
test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
]
try:
required_ids = set(test_set["sample_id"].astype(str))
provided_ids = set(predictions["sample_id"].astype(str))
missing_ids = required_ids - provided_ids
extra_ids = provided_ids - required_ids
matching_ids = provided_ids & required_ids
return {
"is_complete": len(missing_ids) == 0,
"missing_count": len(missing_ids),
"extra_count": len(extra_ids),
"missing_ids": list(missing_ids)[:10],
"coverage": len(matching_ids) / len(required_ids) if required_ids else 0.0,
}
except Exception as e:
print(f"Error in submission completeness validation: {e}")
return {
"is_complete": False,
"missing_count": 0,
"extra_count": 0,
"missing_ids": [],
"coverage": 0.0,
}
def get_model_summary_stats(model_results: Dict, track: str = None) -> Dict:
"""Extract summary statistics from model evaluation results."""
if not model_results or "tracks" not in model_results:
return {}
tracks = model_results["tracks"]
# If specific track requested
if track and track in tracks:
track_data = tracks[track]
if track_data.get("error"):
return {"error": f"No valid data for {track} track"}
track_averages = track_data.get("track_averages", {})
summary = track_data.get("summary", {})
stats = {
"track": track,
"track_name": EVALUATION_TRACKS[track]["name"],
"quality_score": track_averages.get("quality_score", 0.0),
"bleu": track_averages.get("bleu", 0.0),
"chrf": track_averages.get("chrf", 0.0),
"total_samples": summary.get("total_samples", 0),
"language_pairs": summary.get("language_pairs_evaluated", 0),
}
return stats
# Otherwise, return summary across all tracks
all_tracks_summary = {
"tracks_evaluated": len([t for t in tracks.values() if not t.get("error")]),
"total_tracks": len(EVALUATION_TRACKS),
"by_track": {},
}
for track_name, track_data in tracks.items():
if not track_data.get("error"):
track_averages = track_data.get("track_averages", {})
summary = track_data.get("summary", {})
all_tracks_summary["by_track"][track_name] = {
"quality_score": track_averages.get("quality_score", 0.0),
"samples": summary.get("total_samples", 0),
"pairs": summary.get("language_pairs_evaluated", 0),
}
return all_tracks_summary |