leaderboard / app.py
akera's picture
Create app.py
0c7e136 verified
raw
history blame
14.4 kB
# app.py
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from datasets import load_dataset
import yaml
import json
import torch
from datetime import datetime
import traceback
# Import our modules
from src.model_loader import load_model, get_model_info
from src.evaluation import evaluate_model_full
from src.leaderboard import load_leaderboard, add_model_results, get_leaderboard_summary, search_models
from src.plotting import create_leaderboard_plot, create_detailed_comparison_plot, create_summary_metrics_plot
from src.utils import validate_model_path, get_model_type, sanitize_input
from config import *
# Global variables for caching
current_leaderboard = None
test_data = None
def load_salt_data():
"""Load SALT dataset for evaluation."""
global test_data
if test_data is not None:
return test_data
try:
print("Loading SALT dataset...")
# Configuration for SALT dataset
dataset_config = f'''
huggingface_load:
path: {SALT_DATASET}
name: text-all
split: dev[:{MAX_EVAL_SAMPLES}]
source:
type: text
language: {SUPPORTED_LANGUAGES}
target:
type: text
language: {SUPPORTED_LANGUAGES}
src_or_tgt_languages_must_contain: eng
allow_same_src_and_tgt_language: False
'''
config = yaml.safe_load(dataset_config)
# Import salt dataset utilities
import salt.dataset
test_data = pd.DataFrame(salt.dataset.create(config))
print(f"Loaded {len(test_data)} evaluation samples")
return test_data
except Exception as e:
print(f"Error loading SALT dataset: {e}")
# Fallback: create minimal test data
test_data = pd.DataFrame({
'source': ['Hello world', 'How are you?'],
'target': ['Amakuru', 'Oli otya?'],
'source.language': ['eng', 'eng'],
'target.language': ['lug', 'lug']
})
return test_data
def refresh_leaderboard():
"""Refresh leaderboard data."""
global current_leaderboard
current_leaderboard = load_leaderboard()
return current_leaderboard
def evaluate_submission(model_path: str, author_name: str) -> tuple:
"""Main evaluation function."""
try:
# Validate inputs
model_path = sanitize_input(model_path)
author_name = sanitize_input(author_name)
if not model_path:
return "❌ Error: Model path is required", None, None, None
if not author_name:
author_name = "Anonymous"
if not validate_model_path(model_path):
return "❌ Error: Invalid model path format", None, None, None
# Load test data
test_data = load_salt_data()
if test_data is None or len(test_data) == 0:
return "❌ Error: Could not load evaluation data", None, None, None
# Get model info
print(f"Getting model info for: {model_path}")
model_info = get_model_info(model_path)
model_type = get_model_type(model_path)
# Load model
print(f"Loading model: {model_path}")
try:
model, tokenizer = load_model(model_path)
except Exception as e:
return f"❌ Error loading model: {str(e)}", None, None, None
# Run evaluation
print("Starting evaluation...")
try:
detailed_metrics = evaluate_model_full(model, tokenizer, model_path, test_data)
except Exception as e:
return f"❌ Error during evaluation: {str(e)}", None, None, None
# Extract average metrics
avg_metrics = detailed_metrics.get('averages', {})
if not avg_metrics:
return "❌ Error: No metrics calculated", None, None, None
# Add results to leaderboard
print("Adding results to leaderboard...")
updated_leaderboard = add_model_results(
model_path=model_path,
author=author_name,
metrics=avg_metrics,
detailed_metrics=detailed_metrics,
evaluation_samples=len(test_data),
model_type=model_type
)
# Update global leaderboard
global current_leaderboard
current_leaderboard = updated_leaderboard
# Create visualizations
leaderboard_plot = create_leaderboard_plot(updated_leaderboard, 'quality_score')
detailed_plot = create_detailed_comparison_plot({model_path: detailed_metrics}, [model_path])
# Format results message
results_msg = f"""
βœ… **Evaluation Complete!**
**Model:** {model_path}
**Author:** {author_name}
**Type:** {model_type}
**Results:**
- Quality Score: {avg_metrics.get('quality_score', 0):.4f}
- BLEU: {avg_metrics.get('bleu', 0):.2f}
- ChrF: {avg_metrics.get('chrf', 0):.4f}
- ROUGE-L: {avg_metrics.get('rougeL', 0):.4f}
**Ranking:** #{updated_leaderboard[updated_leaderboard['model_path'] == model_path].index[0] + 1} out of {len(updated_leaderboard)} models
"""
return results_msg, updated_leaderboard, leaderboard_plot, detailed_plot
except Exception as e:
error_msg = f"❌ Unexpected error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, None, None
def update_leaderboard_display(search_query: str = "") -> tuple:
"""Update leaderboard display with optional search."""
global current_leaderboard
if current_leaderboard is None:
current_leaderboard = refresh_leaderboard()
# Apply search filter
if search_query:
filtered_df = search_models(current_leaderboard, search_query)
else:
filtered_df = current_leaderboard
# Create plots
leaderboard_plot = create_leaderboard_plot(filtered_df, 'quality_score')
summary_plot = create_summary_metrics_plot(filtered_df)
# Get summary stats
summary = get_leaderboard_summary(filtered_df)
summary_text = f"""
πŸ“Š **Leaderboard Summary**
- Total Models: {summary['total_models']}
- Average Quality Score: {summary['avg_quality_score']:.4f}
- Best Model: {summary['best_model']}
- Latest Submission: {summary['latest_submission'][:10] if summary['latest_submission'] != 'None' else 'None'}
"""
return filtered_df, leaderboard_plot, summary_plot, summary_text
# Initialize data
print("Initializing SALT Translation Leaderboard...")
load_salt_data()
refresh_leaderboard()
# Create Gradio interface
with gr.Blocks(
title=TITLE,
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
.metric-display {
background: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
"""
) as demo:
# Header
gr.Markdown(f"""
<div class="main-header">
# {TITLE}
{DESCRIPTION}
**Supported Languages:** Luganda (lug), Acholi (ach), Swahili (swa), English (eng)
</div>
""")
with gr.Tabs():
# Tab 1: Submit Model
with gr.Tab("πŸš€ Submit Model", id="submit"):
gr.Markdown("""
### Submit Your Translation Model
Enter a HuggingFace model path (e.g., `microsoft/DialoGPT-medium`) or use `google-translate` to benchmark against Google Translate.
**Supported Model Types:** Gemma, Qwen, Llama, NLLB, Google Translate
""")
with gr.Row():
with gr.Column(scale=2):
model_input = gr.Textbox(
label="πŸ€— HuggingFace Model Path",
placeholder="e.g., Sunbird/gemma3-12b-ug40-merged",
info="Enter the full HuggingFace model path or 'google-translate'"
)
author_input = gr.Textbox(
label="πŸ‘€ Author/Organization",
placeholder="Your name or organization",
value="Anonymous"
)
submit_btn = gr.Button(
"πŸ”„ Evaluate Model",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("""
**πŸ“‹ Evaluation Process:**
1. Model validation
2. Loading model weights
3. Generating translations
4. Calculating metrics
5. Updating leaderboard
⏱️ **Expected time:** 5-15 minutes
""")
# Results section
with gr.Group():
results_output = gr.Markdown(label="πŸ“Š Results")
with gr.Row():
with gr.Column():
results_leaderboard = gr.Dataframe(
label="πŸ“ˆ Updated Leaderboard",
interactive=False
)
with gr.Row():
results_plot = gr.Plot(label="πŸ“Š Leaderboard Ranking")
detailed_plot = gr.Plot(label="πŸ” Detailed Performance")
# Tab 2: Leaderboard
with gr.Tab("πŸ† Leaderboard", id="leaderboard"):
with gr.Row():
search_input = gr.Textbox(
label="πŸ” Search Models",
placeholder="Search by model name, author, or path...",
scale=3
)
refresh_btn = gr.Button("πŸ”„ Refresh", scale=1)
summary_stats = gr.Markdown(label="πŸ“Š Summary")
with gr.Row():
leaderboard_table = gr.Dataframe(
label="πŸ† Model Rankings",
interactive=False,
wrap=True
)
with gr.Row():
leaderboard_viz = gr.Plot(label="πŸ“Š Performance Comparison")
summary_viz = gr.Plot(label="πŸ“ˆ Top Models Summary")
# Tab 3: Documentation
with gr.Tab("πŸ“š Documentation", id="docs"):
gr.Markdown("""
## πŸ“– How to Use the SALT Translation Leaderboard
### πŸš€ Submitting Your Model
1. **Prepare your model**: Ensure your model is uploaded to HuggingFace Hub
2. **Enter model path**: Use the format `username/model-name`
3. **Add your details**: Provide your name or organization
4. **Submit**: Click "Evaluate Model" and wait for results
### πŸ“Š Metrics Explained
- **Quality Score**: Combined metric (0-1, higher is better)
- **BLEU**: Translation quality (0-100, higher is better)
- **ChrF**: Character-level F-score (0-1, higher is better)
- **ROUGE-L**: Longest common subsequence (0-1, higher is better)
- **CER/WER**: Character/Word Error Rate (0-1, lower is better)
### 🎯 Supported Models
- **Gemma**: Google's Gemma models fine-tuned for translation
- **Qwen**: Alibaba's Qwen models
- **Llama**: Meta's Llama models
- **NLLB**: Facebook's No Language Left Behind models
- **Google Translate**: Baseline comparison
### πŸ“‹ Dataset Information
**SALT Dataset**: Sunbird AI's comprehensive translation dataset
- **Languages**: Luganda, Acholi, Swahili, English
- **Evaluation Size**: {MAX_EVAL_SAMPLES} samples
- **Domains**: Multiple domains including news, literature, and conversations
### πŸ”„ API Access
The leaderboard data is available via HuggingFace Datasets:
```python
from datasets import load_dataset
leaderboard = load_dataset("{LEADERBOARD_DATASET}")
```
### 🀝 Contributing
This leaderboard is maintained by [Sunbird AI](https://sunbird.ai).
For issues or suggestions, please contact us or submit a GitHub issue.
### πŸ“œ License & Citation
If you use this leaderboard in your research, please cite:
```
@misc{{salt_leaderboard_2024,
title={{SALT Translation Leaderboard}},
author={{Sunbird AI}},
year={{2024}},
url={{https://huggingface.co/spaces/Sunbird/salt-translation-leaderboard}}
}}
```
""")
# Event handlers
submit_btn.click(
fn=evaluate_submission,
inputs=[model_input, author_input],
outputs=[results_output, results_leaderboard, results_plot, detailed_plot],
show_progress=True
)
refresh_btn.click(
fn=update_leaderboard_display,
inputs=[search_input],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
search_input.change(
fn=update_leaderboard_display,
inputs=[search_input],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
# Load initial leaderboard data
demo.load(
fn=update_leaderboard_display,
inputs=[],
outputs=[leaderboard_table, leaderboard_viz, summary_viz, summary_stats]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)