Spaces:
Running
Running
# src/test_set.py | |
import os | |
import pandas as pd | |
import yaml | |
import numpy as np | |
from datasets import load_dataset | |
from config import ( | |
TEST_SET_DATASET, | |
SALT_DATASET, | |
MAX_TEST_SAMPLES, | |
HF_TOKEN, | |
ALL_UG40_LANGUAGES, | |
GOOGLE_SUPPORTED_LANGUAGES, | |
EVALUATION_TRACKS, | |
LANGUAGE_NAMES, | |
) | |
import salt.dataset | |
from src.utils import get_all_language_pairs | |
from typing import Dict, List, Optional, Tuple | |
# Local CSV filenames for persistence | |
LOCAL_PUBLIC_CSV = "salt_test_set.csv" | |
LOCAL_COMPLETE_CSV = "salt_complete_test_set.csv" | |
def generate_test_set(max_samples_per_pair: int = MAX_TEST_SAMPLES) -> pd.DataFrame: | |
"""Generate test set from SALT dataset.""" | |
print("π¬ Generating SALT test set...") | |
try: | |
# Build SALT dataset config | |
dataset_config = f""" | |
huggingface_load: | |
path: {SALT_DATASET} | |
name: text-all | |
split: test | |
source: | |
type: text | |
language: {ALL_UG40_LANGUAGES} | |
target: | |
type: text | |
language: {ALL_UG40_LANGUAGES} | |
allow_same_src_and_tgt_language: False | |
""" | |
config = yaml.safe_load(dataset_config) | |
print("π₯ Loading SALT dataset...") | |
full_data = pd.DataFrame(salt.dataset.create(config)) | |
print(f"π Loaded {len(full_data):,} samples from SALT dataset") | |
test_samples = [] | |
sample_id_counter = 1 | |
# Generate samples for each language pair | |
for src_lang in ALL_UG40_LANGUAGES: | |
for tgt_lang in ALL_UG40_LANGUAGES: | |
if src_lang == tgt_lang: | |
continue | |
# Filter for this language pair | |
pair_data = full_data[ | |
(full_data["source.language"] == src_lang) & | |
(full_data["target.language"] == tgt_lang) | |
] | |
if pair_data.empty: | |
print(f"β οΈ No data found for {src_lang} β {tgt_lang}") | |
continue | |
# Sample data for this pair | |
n_samples = min(len(pair_data), max_samples_per_pair) | |
sampled = pair_data.sample(n=n_samples, random_state=42) | |
print(f"β {src_lang} β {tgt_lang}: {len(sampled)} samples") | |
for _, row in sampled.iterrows(): | |
test_samples.append({ | |
"sample_id": f"salt_{sample_id_counter:06d}", | |
"source_text": row["source"], | |
"target_text": row["target"], | |
"source_language": src_lang, | |
"target_language": tgt_lang, | |
"domain": row.get("domain", "general"), | |
"google_comparable": ( | |
src_lang in GOOGLE_SUPPORTED_LANGUAGES and | |
tgt_lang in GOOGLE_SUPPORTED_LANGUAGES | |
), | |
}) | |
sample_id_counter += 1 | |
test_df = pd.DataFrame(test_samples) | |
if test_df.empty: | |
raise ValueError("No test samples generated - check SALT dataset availability") | |
print(f"β Generated test set: {len(test_df):,} samples") | |
return test_df | |
except Exception as e: | |
print(f"β Error generating test set: {e}") | |
return pd.DataFrame(columns=[ | |
"sample_id", "source_text", "target_text", "source_language", | |
"target_language", "domain", "google_comparable" | |
]) | |
def _generate_and_save_test_set() -> Tuple[pd.DataFrame, pd.DataFrame]: | |
"""Generate and save both public and complete versions of the test set.""" | |
print("π¬ Generating and saving test sets...") | |
full_df = generate_test_set() | |
if full_df.empty: | |
print("β Failed to generate test set") | |
empty_public = pd.DataFrame(columns=[ | |
"sample_id", "source_text", "source_language", | |
"target_language", "domain", "google_comparable" | |
]) | |
empty_complete = pd.DataFrame(columns=[ | |
"sample_id", "source_text", "target_text", "source_language", | |
"target_language", "domain", "google_comparable" | |
]) | |
return empty_public, empty_complete | |
# Public version (no target_text) | |
public_df = full_df[[ | |
"sample_id", "source_text", "source_language", | |
"target_language", "domain", "google_comparable" | |
]].copy() | |
# Save versions | |
try: | |
public_df.to_csv(LOCAL_PUBLIC_CSV, index=False) | |
full_df.to_csv(LOCAL_COMPLETE_CSV, index=False) | |
print(f"β Saved test sets: {LOCAL_PUBLIC_CSV}, {LOCAL_COMPLETE_CSV}") | |
except Exception as e: | |
print(f"β οΈ Error saving CSVs: {e}") | |
return public_df, full_df | |
def get_public_test_set() -> pd.DataFrame: | |
"""Load the public test set with enhanced fallback logic.""" | |
# 1) Try HF Hub | |
try: | |
print("π₯ Attempting to load test set from HF Hub...") | |
ds = load_dataset(TEST_SET_DATASET, split="train", token=HF_TOKEN) | |
df = ds.to_pandas() | |
# Validate structure | |
required_cols = ["sample_id", "source_text", "source_language", "target_language"] | |
if all(col in df.columns for col in required_cols): | |
print(f"β Loaded test set from HF Hub ({len(df):,} samples)") | |
return df | |
else: | |
print("β οΈ HF Hub test set missing columns, regenerating...") | |
except Exception as e: | |
print(f"β οΈ HF Hub load failed: {e}") | |
# 2) Try local CSV | |
if os.path.exists(LOCAL_PUBLIC_CSV): | |
try: | |
df = pd.read_csv(LOCAL_PUBLIC_CSV) | |
required_cols = ["sample_id", "source_text", "source_language", "target_language"] | |
if all(col in df.columns for col in required_cols): | |
print(f"β Loaded test set from local CSV ({len(df):,} samples)") | |
return df | |
else: | |
print("β οΈ Local CSV has invalid structure, regenerating...") | |
except Exception as e: | |
print(f"β οΈ Failed to read local CSV: {e}") | |
# 3) Regenerate & save | |
print("π Generating new test set...") | |
public_df, _ = _generate_and_save_test_set() | |
return public_df | |
def get_complete_test_set() -> pd.DataFrame: | |
"""Load the complete test set with targets.""" | |
# 1) Try HF Hub private | |
try: | |
print("π₯ Attempting to load complete test set from HF Hub...") | |
ds = load_dataset(TEST_SET_DATASET + "-private", split="train", token=HF_TOKEN) | |
df = ds.to_pandas() | |
required_cols = ["sample_id", "source_text", "target_text", "source_language", "target_language"] | |
if all(col in df.columns for col in required_cols): | |
print(f"β Loaded complete test set from HF Hub ({len(df):,} samples)") | |
return df | |
else: | |
print("β οΈ HF Hub complete test set missing columns, regenerating...") | |
except Exception as e: | |
print(f"β οΈ HF Hub private load failed: {e}") | |
# 2) Try local CSV | |
if os.path.exists(LOCAL_COMPLETE_CSV): | |
try: | |
df = pd.read_csv(LOCAL_COMPLETE_CSV) | |
required_cols = ["sample_id", "source_text", "target_text", "source_language", "target_language"] | |
if all(col in df.columns for col in required_cols): | |
print(f"β Loaded complete test set from local CSV ({len(df):,} samples)") | |
return df | |
else: | |
print("β οΈ Local complete CSV has invalid structure, regenerating...") | |
except Exception as e: | |
print(f"β οΈ Failed to read local complete CSV: {e}") | |
# 3) Regenerate & save | |
print("π Generating new complete test set...") | |
_, complete_df = _generate_and_save_test_set() | |
return complete_df | |
def create_test_set_download() -> Tuple[str, Dict]: | |
"""Create test set download with comprehensive metadata.""" | |
public_df = get_public_test_set() | |
if public_df.empty: | |
stats = { | |
"total_samples": 0, | |
"track_breakdown": {}, | |
"languages": [], | |
"language_pairs": 0, | |
"google_comparable_samples": 0, | |
} | |
return LOCAL_PUBLIC_CSV, stats | |
download_path = LOCAL_PUBLIC_CSV | |
# Ensure the CSV is up-to-date | |
try: | |
public_df.to_csv(download_path, index=False) | |
except Exception as e: | |
print(f"β οΈ Error updating CSV: {e}") | |
# Calculate comprehensive statistics | |
try: | |
# Basic statistics | |
stats = { | |
"total_samples": len(public_df), | |
"languages": sorted(list(set(public_df["source_language"]).union(public_df["target_language"]))), | |
"language_pairs": len(public_df.groupby(["source_language", "target_language"])), | |
} | |
# Track-specific breakdown | |
track_breakdown = {} | |
for track_name, track_config in EVALUATION_TRACKS.items(): | |
track_languages = track_config["languages"] | |
track_data = public_df[ | |
(public_df["source_language"].isin(track_languages)) & | |
(public_df["target_language"].isin(track_languages)) | |
] | |
track_breakdown[track_name] = { | |
"total_samples": len(track_data), | |
"language_pairs": len(track_data.groupby(["source_language", "target_language"])), | |
"languages": track_languages, | |
} | |
stats["track_breakdown"] = track_breakdown | |
# Google-comparable statistics | |
if "google_comparable" in public_df.columns: | |
stats["google_comparable_samples"] = int(public_df["google_comparable"].sum()) | |
else: | |
stats["google_comparable_samples"] = 0 | |
except Exception as e: | |
print(f"β οΈ Error calculating stats: {e}") | |
stats = { | |
"total_samples": len(public_df), | |
"track_breakdown": {}, | |
"languages": [], | |
"language_pairs": 0, | |
"google_comparable_samples": 0, | |
} | |
return download_path, stats | |
def get_track_test_set(track: str) -> pd.DataFrame: | |
"""Get test set filtered for a specific track.""" | |
if track not in EVALUATION_TRACKS: | |
print(f"β Unknown track: {track}") | |
return pd.DataFrame() | |
# Get main test set and filter | |
public_df = get_public_test_set() | |
if public_df.empty: | |
return pd.DataFrame() | |
track_languages = EVALUATION_TRACKS[track]["languages"] | |
track_df = public_df[ | |
(public_df["source_language"].isin(track_languages)) & | |
(public_df["target_language"].isin(track_languages)) | |
] | |
print(f"β Filtered {track} test set: {len(track_df):,} samples") | |
return track_df | |
def validate_test_set_integrity() -> Dict: | |
"""Validate test set integrity.""" | |
try: | |
public_df = get_public_test_set() | |
complete_df = get_complete_test_set() | |
if public_df.empty or complete_df.empty: | |
return { | |
"alignment_check": False, | |
"total_samples": 0, | |
"track_analysis": {}, | |
"error": "Test sets are empty or could not be loaded", | |
} | |
public_ids = set(public_df["sample_id"]) | |
private_ids = set(complete_df["sample_id"]) | |
# Track-specific analysis | |
track_analysis = {} | |
for track_name, track_config in EVALUATION_TRACKS.items(): | |
track_languages = track_config["languages"] | |
# Analyze public set for this track | |
track_public = public_df[ | |
(public_df["source_language"].isin(track_languages)) & | |
(public_df["target_language"].isin(track_languages)) | |
] | |
# Analyze complete set for this track | |
track_complete = complete_df[ | |
(complete_df["source_language"].isin(track_languages)) & | |
(complete_df["target_language"].isin(track_languages)) | |
] | |
track_analysis[track_name] = { | |
"public_samples": len(track_public), | |
"complete_samples": len(track_complete), | |
"alignment": len(track_public) == len(track_complete), | |
"languages": track_languages, | |
} | |
return { | |
"alignment_check": public_ids <= private_ids, | |
"total_samples": len(public_df), | |
"track_analysis": track_analysis, | |
"public_samples": len(public_df), | |
"private_samples": len(complete_df), | |
"id_alignment_rate": len(public_ids & private_ids) / len(public_ids) if public_ids else 0.0, | |
} | |
except Exception as e: | |
return { | |
"alignment_check": False, | |
"total_samples": 0, | |
"track_analysis": {}, | |
"error": f"Validation failed: {str(e)}", | |
} |