Spaces:
Sleeping
Sleeping
Create model_loader.py
Browse files- src/model_loader.py +125 -0
src/model_loader.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/model_loader.py
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
import unsloth
|
5 |
+
from typing import Tuple, Any
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings("ignore")
|
8 |
+
|
9 |
+
def load_model(model_path: str, load_in_4bit: bool = True, use_unsloth: bool = True) -> Tuple[Any, Any]:
|
10 |
+
"""
|
11 |
+
Load model for evaluation. Supports multiple model types.
|
12 |
+
Returns (model, tokenizer) or ('google-translate', None) for Google Translate.
|
13 |
+
"""
|
14 |
+
print(f"Loading model from {model_path}...")
|
15 |
+
|
16 |
+
# Google Translate "model"
|
17 |
+
if model_path == 'google-translate':
|
18 |
+
return 'google-translate', None
|
19 |
+
|
20 |
+
try:
|
21 |
+
# NLLB models
|
22 |
+
if 'nllb' in model_path.lower():
|
23 |
+
tokenizer = transformers.NllbTokenizer.from_pretrained(model_path)
|
24 |
+
model = transformers.M2M100ForConditionalGeneration.from_pretrained(
|
25 |
+
model_path, torch_dtype=torch.bfloat16
|
26 |
+
).to('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
+
|
28 |
+
# Quantized models (4bit)
|
29 |
+
elif '4bit' in model_path.lower():
|
30 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
31 |
+
model_path,
|
32 |
+
model_max_length=4096,
|
33 |
+
padding_side='left'
|
34 |
+
)
|
35 |
+
tokenizer.pad_token = tokenizer.bos_token
|
36 |
+
|
37 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
38 |
+
load_in_4bit=True,
|
39 |
+
bnb_4bit_quant_type="nf4",
|
40 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
41 |
+
bnb_4bit_use_double_quant=True,
|
42 |
+
)
|
43 |
+
|
44 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_path,
|
46 |
+
quantization_config=bnb_config,
|
47 |
+
device_map="auto",
|
48 |
+
torch_dtype=torch.bfloat16,
|
49 |
+
trust_remote_code=True,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Standard models with unsloth optimization
|
53 |
+
else:
|
54 |
+
if use_unsloth:
|
55 |
+
try:
|
56 |
+
model, tokenizer = unsloth.FastModel.from_pretrained(
|
57 |
+
model_name=model_path,
|
58 |
+
max_seq_length=1024,
|
59 |
+
load_in_4bit=False,
|
60 |
+
load_in_8bit=False,
|
61 |
+
full_finetuning=False,
|
62 |
+
)
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Unsloth loading failed: {e}. Falling back to standard loading.")
|
65 |
+
use_unsloth = False
|
66 |
+
|
67 |
+
if not use_unsloth:
|
68 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
|
69 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_path,
|
71 |
+
torch_dtype=torch.bfloat16,
|
72 |
+
device_map='auto' if torch.cuda.is_available() else None,
|
73 |
+
)
|
74 |
+
|
75 |
+
print(f"Successfully loaded {model_path}")
|
76 |
+
return model, tokenizer
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error loading model {model_path}: {str(e)}")
|
80 |
+
raise Exception(f"Failed to load model: {str(e)}")
|
81 |
+
|
82 |
+
def get_model_info(model_path: str) -> dict:
|
83 |
+
"""Get basic information about a model without loading it."""
|
84 |
+
try:
|
85 |
+
if model_path == 'google-translate':
|
86 |
+
return {
|
87 |
+
'name': 'Google Translate',
|
88 |
+
'type': 'google-translate',
|
89 |
+
'size': 'Unknown',
|
90 |
+
'description': 'Google Cloud Translation API'
|
91 |
+
}
|
92 |
+
|
93 |
+
from huggingface_hub import model_info
|
94 |
+
info = model_info(model_path)
|
95 |
+
|
96 |
+
return {
|
97 |
+
'name': model_path,
|
98 |
+
'type': get_model_type(model_path),
|
99 |
+
'size': getattr(info, 'safetensors', {}).get('total', 'Unknown'),
|
100 |
+
'description': getattr(info, 'description', 'No description available')
|
101 |
+
}
|
102 |
+
except Exception as e:
|
103 |
+
return {
|
104 |
+
'name': model_path,
|
105 |
+
'type': 'unknown',
|
106 |
+
'size': 'Unknown',
|
107 |
+
'description': f'Error getting info: {str(e)}'
|
108 |
+
}
|
109 |
+
|
110 |
+
def get_model_type(model_path: str) -> str:
|
111 |
+
"""Determine model type from path."""
|
112 |
+
model_path_lower = model_path.lower()
|
113 |
+
|
114 |
+
if model_path == 'google-translate':
|
115 |
+
return 'google-translate'
|
116 |
+
elif 'gemma' in model_path_lower:
|
117 |
+
return 'gemma'
|
118 |
+
elif 'qwen' in model_path_lower:
|
119 |
+
return 'qwen'
|
120 |
+
elif 'llama' in model_path_lower:
|
121 |
+
return 'llama'
|
122 |
+
elif 'nllb' in model_path_lower:
|
123 |
+
return 'nllb'
|
124 |
+
else:
|
125 |
+
return 'other'
|