Spaces:
Sleeping
Sleeping
Update src/leaderboard.py
Browse files- src/leaderboard.py +536 -341
src/leaderboard.py
CHANGED
@@ -5,438 +5,633 @@ import json
|
|
5 |
import datetime
|
6 |
from typing import Dict, List, Optional, Tuple
|
7 |
import os
|
8 |
-
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
def initialize_leaderboard() -> pd.DataFrame:
|
12 |
-
"""Initialize empty leaderboard DataFrame."""
|
13 |
-
|
14 |
columns = {
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Metadata
|
51 |
-
|
52 |
-
|
|
|
53 |
}
|
54 |
-
|
55 |
return pd.DataFrame(columns)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
try:
|
61 |
-
print("Loading leaderboard...")
|
62 |
-
dataset = load_dataset(LEADERBOARD_DATASET, split=
|
63 |
df = dataset.to_pandas()
|
64 |
-
|
65 |
# Ensure all required columns exist
|
66 |
-
required_columns = list(
|
67 |
for col in required_columns:
|
68 |
if col not in df.columns:
|
69 |
-
if
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
73 |
df[col] = 0.0
|
74 |
-
elif col
|
75 |
-
df[col] =
|
76 |
else:
|
77 |
-
df[col] =
|
78 |
-
|
79 |
-
print(f"Loaded leaderboard with {len(df)} entries")
|
80 |
return df
|
81 |
-
|
82 |
except Exception as e:
|
83 |
-
print(f"Could not load leaderboard: {e}")
|
84 |
-
print("Initializing empty leaderboard...")
|
85 |
-
return
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
def save_leaderboard(df: pd.DataFrame) -> bool:
|
88 |
-
"""Save leaderboard to HuggingFace dataset."""
|
89 |
-
|
90 |
try:
|
91 |
# Clean data before saving
|
92 |
df_clean = df.copy()
|
93 |
-
|
94 |
# Ensure numeric columns are proper types
|
95 |
-
numeric_columns = [
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
for col in numeric_columns:
|
101 |
if col in df_clean.columns:
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
# Convert to dataset
|
105 |
dataset = Dataset.from_pandas(df_clean)
|
106 |
-
|
107 |
# Push to hub
|
108 |
dataset.push_to_hub(
|
109 |
-
LEADERBOARD_DATASET,
|
110 |
token=HF_TOKEN,
|
111 |
-
commit_message=f"Update leaderboard - {datetime.datetime.now().isoformat()[:19]}"
|
112 |
)
|
113 |
-
|
114 |
-
print("
|
115 |
return True
|
116 |
-
|
117 |
except Exception as e:
|
118 |
-
print(f"Error saving leaderboard: {e}")
|
119 |
return False
|
120 |
|
121 |
-
|
|
|
122 |
model_name: str,
|
123 |
author: str,
|
124 |
evaluation_results: Dict,
|
125 |
-
|
126 |
-
|
127 |
-
description: str = ""
|
128 |
) -> pd.DataFrame:
|
129 |
-
"""
|
130 |
-
|
131 |
-
"""
|
132 |
# Load current leaderboard
|
133 |
-
df =
|
134 |
|
135 |
# Remove existing entry if present
|
136 |
-
existing_mask = df[
|
137 |
if existing_mask.any():
|
138 |
df = df[~existing_mask]
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
143 |
-
if 'sample_metrics' in safe_results:
|
144 |
-
safe_results.pop('sample_metrics')
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
# Extract metrics
|
149 |
-
averages = evaluation_results.get('averages', {})
|
150 |
-
google_averages = evaluation_results.get('google_comparable_averages', {})
|
151 |
-
summary = evaluation_results.get('summary', {})
|
152 |
|
153 |
# Prepare new entry
|
154 |
new_entry = {
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
#
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
'len_ratio': float(averages.get('len_ratio', 0.0)),
|
174 |
-
|
175 |
-
# Google comparable metrics
|
176 |
-
'google_quality_score': float(google_averages.get('quality_score', 0.0)),
|
177 |
-
'google_bleu': float(google_averages.get('bleu', 0.0)),
|
178 |
-
'google_chrf': float(google_averages.get('chrf', 0.0)),
|
179 |
-
|
180 |
-
# Coverage info
|
181 |
-
'total_samples': int(summary.get('total_samples', 0)),
|
182 |
-
'language_pairs_covered': int(summary.get('language_pairs_covered', 0)),
|
183 |
-
'google_pairs_covered': int(summary.get('google_comparable_pairs', 0)),
|
184 |
-
'coverage_rate': float(validation_info.get('coverage', 0.0)),
|
185 |
-
|
186 |
-
# Detailed results (JSON string)
|
187 |
-
'detailed_metrics': detailed_json,
|
188 |
-
'validation_report': validation_info.get('report', ''),
|
189 |
-
|
190 |
# Metadata
|
191 |
-
|
192 |
-
|
|
|
193 |
}
|
194 |
|
195 |
# Convert to DataFrame and append
|
196 |
new_row_df = pd.DataFrame([new_entry])
|
197 |
updated_df = pd.concat([df, new_row_df], ignore_index=True)
|
198 |
-
updated_df = updated_df.sort_values('quality_score', ascending=False).reset_index(drop=True)
|
199 |
|
200 |
# Save to hub
|
201 |
-
|
202 |
|
203 |
return updated_df
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
if df.empty:
|
209 |
return df
|
210 |
-
|
211 |
-
# Select columns for
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
218 |
]
|
219 |
-
|
220 |
# Only include columns that exist
|
221 |
-
available_columns = [
|
|
|
|
|
222 |
display_df = df[available_columns].copy()
|
223 |
-
|
224 |
# Format numeric columns
|
225 |
numeric_format = {
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
'coverage_rate': '{:.1%}',
|
232 |
}
|
233 |
-
|
234 |
for col, fmt in numeric_format.items():
|
235 |
if col in display_df.columns:
|
236 |
-
display_df[col] = display_df[col].apply(
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
# Format submission date
|
239 |
-
if
|
240 |
-
display_df[
|
241 |
-
|
|
|
|
|
242 |
# Rename columns for better display
|
|
|
243 |
column_renames = {
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
'google_pairs_covered': 'Google Pairs',
|
256 |
-
'coverage_rate': 'Coverage'
|
257 |
}
|
258 |
-
|
259 |
display_df = display_df.rename(columns=column_renames)
|
260 |
-
|
261 |
return display_df
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
266 |
if df.empty:
|
267 |
return {
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
'coverage_distribution': {},
|
274 |
-
'language_pair_coverage': {}
|
275 |
}
|
276 |
-
|
277 |
-
# Basic stats
|
278 |
stats = {
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
'author': df.iloc[0]['author']
|
285 |
-
} if len(df) > 0 else None,
|
286 |
-
'latest_submission': df['submission_date'].max() if len(df) > 0 else None
|
287 |
}
|
288 |
-
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
stats[
|
296 |
-
|
297 |
-
#
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
return stats
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
"""Filter leaderboard based on various criteria."""
|
314 |
-
|
315 |
-
filtered_df = df.copy()
|
316 |
-
|
317 |
-
# Text search
|
318 |
-
if search_query:
|
319 |
-
query_lower = search_query.lower()
|
320 |
-
mask = (
|
321 |
-
filtered_df['model_name'].str.lower().str.contains(query_lower, na=False) |
|
322 |
-
filtered_df['author'].str.lower().str.contains(query_lower, na=False) |
|
323 |
-
filtered_df['description'].str.lower().str.contains(query_lower, na=False)
|
324 |
-
)
|
325 |
-
filtered_df = filtered_df[mask]
|
326 |
-
|
327 |
-
# Model type filter
|
328 |
-
if model_type and model_type != "all":
|
329 |
-
filtered_df = filtered_df[filtered_df['model_type'] == model_type]
|
330 |
-
|
331 |
-
# Coverage filter
|
332 |
-
if min_coverage > 0:
|
333 |
-
filtered_df = filtered_df[filtered_df['coverage_rate'] >= min_coverage]
|
334 |
-
|
335 |
-
# Google comparable filter
|
336 |
-
if google_comparable_only:
|
337 |
-
filtered_df = filtered_df[filtered_df['google_pairs_covered'] > 0]
|
338 |
-
|
339 |
-
# Top N filter
|
340 |
-
if top_n:
|
341 |
-
filtered_df = filtered_df.head(top_n)
|
342 |
-
|
343 |
-
return filtered_df
|
344 |
-
|
345 |
-
def get_model_comparison(df: pd.DataFrame, model_names: List[str]) -> Dict:
|
346 |
-
"""Get detailed comparison between specific models."""
|
347 |
-
|
348 |
-
models = df[df['model_name'].isin(model_names)]
|
349 |
-
|
350 |
if len(models) == 0:
|
351 |
-
return {
|
352 |
-
|
353 |
comparison = {
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
357 |
}
|
358 |
-
|
359 |
-
#
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
model_name: float(score)
|
381 |
-
for model_name, score in zip(models['model_name'], models[metric])
|
382 |
}
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
return comparison
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
export_df = df
|
|
|
394 |
else:
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
export_df.to_csv(filename, index=False)
|
405 |
-
elif format ==
|
406 |
-
filename = f"
|
407 |
-
export_df.to_json(filename, orient=
|
408 |
-
elif format ==
|
409 |
-
filename = f"
|
410 |
export_df.to_excel(filename, index=False)
|
411 |
else:
|
412 |
raise ValueError(f"Unsupported format: {format}")
|
413 |
-
|
414 |
-
return filename
|
415 |
|
416 |
-
|
417 |
-
"""Get ranking history for a specific model (if multiple submissions)."""
|
418 |
-
|
419 |
-
model_entries = df[df['model_name'] == model_name].sort_values('submission_date')
|
420 |
-
|
421 |
-
if len(model_entries) == 0:
|
422 |
-
return {'error': 'Model not found'}
|
423 |
-
|
424 |
-
history = []
|
425 |
-
for _, entry in model_entries.iterrows():
|
426 |
-
# Calculate rank at time of submission
|
427 |
-
submission_date = entry['submission_date']
|
428 |
-
historical_df = df[df['submission_date'] <= submission_date]
|
429 |
-
rank = (historical_df['quality_score'] > entry['quality_score']).sum() + 1
|
430 |
-
|
431 |
-
history.append({
|
432 |
-
'submission_date': submission_date,
|
433 |
-
'quality_score': float(entry['quality_score']),
|
434 |
-
'rank': int(rank),
|
435 |
-
'total_models': len(historical_df)
|
436 |
-
})
|
437 |
-
|
438 |
-
return {
|
439 |
-
'model_name': model_name,
|
440 |
-
'history': history,
|
441 |
-
'current_rank': history[-1]['rank'] if history else None
|
442 |
-
}
|
|
|
5 |
import datetime
|
6 |
from typing import Dict, List, Optional, Tuple
|
7 |
import os
|
8 |
+
import numpy as np
|
9 |
+
from config import (
|
10 |
+
LEADERBOARD_DATASET,
|
11 |
+
HF_TOKEN,
|
12 |
+
EVALUATION_TRACKS,
|
13 |
+
MODEL_CATEGORIES,
|
14 |
+
STATISTICAL_CONFIG,
|
15 |
+
METRICS_CONFIG,
|
16 |
+
)
|
17 |
+
from src.utils import create_submission_id, sanitize_model_name
|
18 |
+
|
19 |
+
|
20 |
+
def initialize_scientific_leaderboard() -> pd.DataFrame:
|
21 |
+
"""Initialize empty scientific leaderboard DataFrame with all required columns."""
|
22 |
|
|
|
|
|
|
|
23 |
columns = {
|
24 |
+
# Basic information
|
25 |
+
"submission_id": [],
|
26 |
+
"model_name": [],
|
27 |
+
"author": [],
|
28 |
+
"submission_date": [],
|
29 |
+
"model_category": [],
|
30 |
+
"description": [],
|
31 |
+
# Track-specific quality scores
|
32 |
+
"google_comparable_quality": [],
|
33 |
+
"ug40_complete_quality": [],
|
34 |
+
"language_pair_matrix_quality": [],
|
35 |
+
# Track-specific BLEU scores
|
36 |
+
"google_comparable_bleu": [],
|
37 |
+
"ug40_complete_bleu": [],
|
38 |
+
"language_pair_matrix_bleu": [],
|
39 |
+
# Track-specific ChrF scores
|
40 |
+
"google_comparable_chrf": [],
|
41 |
+
"ug40_complete_chrf": [],
|
42 |
+
"language_pair_matrix_chrf": [],
|
43 |
+
# Statistical metadata
|
44 |
+
"google_comparable_ci_lower": [],
|
45 |
+
"google_comparable_ci_upper": [],
|
46 |
+
"ug40_complete_ci_lower": [],
|
47 |
+
"ug40_complete_ci_upper": [],
|
48 |
+
"language_pair_matrix_ci_lower": [],
|
49 |
+
"language_pair_matrix_ci_upper": [],
|
50 |
+
# Coverage information
|
51 |
+
"google_comparable_samples": [],
|
52 |
+
"ug40_complete_samples": [],
|
53 |
+
"language_pair_matrix_samples": [],
|
54 |
+
"google_comparable_pairs": [],
|
55 |
+
"ug40_complete_pairs": [],
|
56 |
+
"language_pair_matrix_pairs": [],
|
57 |
+
# Statistical adequacy flags
|
58 |
+
"google_comparable_adequate": [],
|
59 |
+
"ug40_complete_adequate": [],
|
60 |
+
"language_pair_matrix_adequate": [],
|
61 |
+
# Detailed results (JSON strings)
|
62 |
+
"detailed_google_comparable": [],
|
63 |
+
"detailed_ug40_complete": [],
|
64 |
+
"detailed_language_pair_matrix": [],
|
65 |
+
"cross_track_analysis": [],
|
66 |
# Metadata
|
67 |
+
"evaluation_date": [],
|
68 |
+
"leaderboard_version": [],
|
69 |
+
"scientific_adequacy_score": [],
|
70 |
}
|
71 |
+
|
72 |
return pd.DataFrame(columns)
|
73 |
|
74 |
+
|
75 |
+
def load_scientific_leaderboard() -> pd.DataFrame:
|
76 |
+
"""Load current scientific leaderboard from HuggingFace dataset."""
|
77 |
+
|
78 |
try:
|
79 |
+
print("📥 Loading scientific leaderboard...")
|
80 |
+
dataset = load_dataset(LEADERBOARD_DATASET + "-scientific", split="train")
|
81 |
df = dataset.to_pandas()
|
82 |
+
|
83 |
# Ensure all required columns exist
|
84 |
+
required_columns = list(initialize_scientific_leaderboard().columns)
|
85 |
for col in required_columns:
|
86 |
if col not in df.columns:
|
87 |
+
if "quality" in col or "bleu" in col or "chrf" in col or "ci_" in col:
|
88 |
+
df[col] = 0.0
|
89 |
+
elif "samples" in col or "pairs" in col:
|
90 |
+
df[col] = 0
|
91 |
+
elif "adequate" in col:
|
92 |
+
df[col] = False
|
93 |
+
elif col == "scientific_adequacy_score":
|
94 |
df[col] = 0.0
|
95 |
+
elif col == "leaderboard_version":
|
96 |
+
df[col] = 2 # Scientific version
|
97 |
else:
|
98 |
+
df[col] = ""
|
99 |
+
|
100 |
+
print(f"✅ Loaded scientific leaderboard with {len(df)} entries")
|
101 |
return df
|
102 |
+
|
103 |
except Exception as e:
|
104 |
+
print(f"⚠️ Could not load scientific leaderboard: {e}")
|
105 |
+
print("🔄 Initializing empty scientific leaderboard...")
|
106 |
+
return initialize_scientific_leaderboard()
|
107 |
+
|
108 |
+
|
109 |
+
def save_scientific_leaderboard(df: pd.DataFrame) -> bool:
|
110 |
+
"""Save scientific leaderboard to HuggingFace dataset."""
|
111 |
|
|
|
|
|
|
|
112 |
try:
|
113 |
# Clean data before saving
|
114 |
df_clean = df.copy()
|
115 |
+
|
116 |
# Ensure numeric columns are proper types
|
117 |
+
numeric_columns = [
|
118 |
+
col
|
119 |
+
for col in df_clean.columns
|
120 |
+
if any(
|
121 |
+
x in col
|
122 |
+
for x in [
|
123 |
+
"quality",
|
124 |
+
"bleu",
|
125 |
+
"chrf",
|
126 |
+
"ci_",
|
127 |
+
"samples",
|
128 |
+
"pairs",
|
129 |
+
"adequacy",
|
130 |
+
]
|
131 |
+
)
|
132 |
+
]
|
133 |
+
|
134 |
for col in numeric_columns:
|
135 |
if col in df_clean.columns:
|
136 |
+
if "adequate" in col:
|
137 |
+
df_clean[col] = df_clean[col].astype(bool)
|
138 |
+
else:
|
139 |
+
df_clean[col] = pd.to_numeric(
|
140 |
+
df_clean[col], errors="coerce"
|
141 |
+
).fillna(0.0)
|
142 |
+
|
143 |
# Convert to dataset
|
144 |
dataset = Dataset.from_pandas(df_clean)
|
145 |
+
|
146 |
# Push to hub
|
147 |
dataset.push_to_hub(
|
148 |
+
LEADERBOARD_DATASET + "-scientific",
|
149 |
token=HF_TOKEN,
|
150 |
+
commit_message=f"Update scientific leaderboard - {datetime.datetime.now().isoformat()[:19]}",
|
151 |
)
|
152 |
+
|
153 |
+
print("✅ Scientific leaderboard saved successfully!")
|
154 |
return True
|
155 |
+
|
156 |
except Exception as e:
|
157 |
+
print(f"❌ Error saving scientific leaderboard: {e}")
|
158 |
return False
|
159 |
|
160 |
+
|
161 |
+
def add_model_to_scientific_leaderboard(
|
162 |
model_name: str,
|
163 |
author: str,
|
164 |
evaluation_results: Dict,
|
165 |
+
model_category: str = "community",
|
166 |
+
description: str = "",
|
|
|
167 |
) -> pd.DataFrame:
|
168 |
+
"""Add new model results to scientific leaderboard."""
|
169 |
+
|
|
|
170 |
# Load current leaderboard
|
171 |
+
df = load_scientific_leaderboard()
|
172 |
|
173 |
# Remove existing entry if present
|
174 |
+
existing_mask = df["model_name"] == model_name
|
175 |
if existing_mask.any():
|
176 |
df = df[~existing_mask]
|
177 |
|
178 |
+
# Extract track results
|
179 |
+
tracks = evaluation_results.get("tracks", {})
|
180 |
+
cross_track = evaluation_results.get("cross_track_analysis", {})
|
|
|
|
|
181 |
|
182 |
+
# Calculate scientific adequacy score
|
183 |
+
adequacy_score = calculate_scientific_adequacy_score(evaluation_results)
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# Prepare new entry
|
186 |
new_entry = {
|
187 |
+
"submission_id": create_submission_id(),
|
188 |
+
"model_name": sanitize_model_name(model_name),
|
189 |
+
"author": author[:100] if author else "Anonymous",
|
190 |
+
"submission_date": datetime.datetime.now().isoformat(),
|
191 |
+
"model_category": (
|
192 |
+
model_category if model_category in MODEL_CATEGORIES else "community"
|
193 |
+
),
|
194 |
+
"description": description[:500] if description else "",
|
195 |
+
# Extract track-specific metrics
|
196 |
+
**extract_track_metrics(tracks),
|
197 |
+
# Statistical metadata
|
198 |
+
**extract_statistical_metadata(tracks),
|
199 |
+
# Coverage information
|
200 |
+
**extract_coverage_information(tracks),
|
201 |
+
# Adequacy flags
|
202 |
+
**extract_adequacy_flags(tracks),
|
203 |
+
# Detailed results (JSON strings)
|
204 |
+
**serialize_detailed_results(tracks, cross_track),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Metadata
|
206 |
+
"evaluation_date": datetime.datetime.now().isoformat(),
|
207 |
+
"leaderboard_version": 2,
|
208 |
+
"scientific_adequacy_score": adequacy_score,
|
209 |
}
|
210 |
|
211 |
# Convert to DataFrame and append
|
212 |
new_row_df = pd.DataFrame([new_entry])
|
213 |
updated_df = pd.concat([df, new_row_df], ignore_index=True)
|
|
|
214 |
|
215 |
# Save to hub
|
216 |
+
save_scientific_leaderboard(updated_df)
|
217 |
|
218 |
return updated_df
|
219 |
|
220 |
+
|
221 |
+
def extract_track_metrics(tracks: Dict) -> Dict:
|
222 |
+
"""Extract primary metrics from each track."""
|
223 |
+
|
224 |
+
metrics = {}
|
225 |
+
|
226 |
+
for track_name in EVALUATION_TRACKS.keys():
|
227 |
+
track_data = tracks.get(track_name, {})
|
228 |
+
track_averages = track_data.get("track_averages", {})
|
229 |
+
|
230 |
+
# Quality score
|
231 |
+
metrics[f"{track_name}_quality"] = float(
|
232 |
+
track_averages.get("quality_score", 0.0)
|
233 |
+
)
|
234 |
+
|
235 |
+
# BLEU score
|
236 |
+
metrics[f"{track_name}_bleu"] = float(track_averages.get("bleu", 0.0))
|
237 |
+
|
238 |
+
# ChrF score
|
239 |
+
metrics[f"{track_name}_chrf"] = float(track_averages.get("chrf", 0.0))
|
240 |
+
|
241 |
+
return metrics
|
242 |
+
|
243 |
+
|
244 |
+
def extract_statistical_metadata(tracks: Dict) -> Dict:
|
245 |
+
"""Extract confidence intervals from each track."""
|
246 |
+
|
247 |
+
metadata = {}
|
248 |
+
|
249 |
+
for track_name in EVALUATION_TRACKS.keys():
|
250 |
+
track_data = tracks.get(track_name, {})
|
251 |
+
track_statistics = track_data.get("track_statistics", {})
|
252 |
+
|
253 |
+
quality_stats = track_statistics.get("quality_score", {})
|
254 |
+
metadata[f"{track_name}_ci_lower"] = float(quality_stats.get("ci_lower", 0.0))
|
255 |
+
metadata[f"{track_name}_ci_upper"] = float(quality_stats.get("ci_upper", 0.0))
|
256 |
+
|
257 |
+
return metadata
|
258 |
+
|
259 |
+
|
260 |
+
def extract_coverage_information(tracks: Dict) -> Dict:
|
261 |
+
"""Extract coverage information from each track."""
|
262 |
+
|
263 |
+
coverage = {}
|
264 |
+
|
265 |
+
for track_name in EVALUATION_TRACKS.keys():
|
266 |
+
track_data = tracks.get(track_name, {})
|
267 |
+
summary = track_data.get("summary", {})
|
268 |
+
|
269 |
+
coverage[f"{track_name}_samples"] = int(summary.get("total_samples", 0))
|
270 |
+
coverage[f"{track_name}_pairs"] = int(
|
271 |
+
summary.get("language_pairs_evaluated", 0)
|
272 |
+
)
|
273 |
+
|
274 |
+
return coverage
|
275 |
+
|
276 |
+
|
277 |
+
def extract_adequacy_flags(tracks: Dict) -> Dict:
|
278 |
+
"""Extract statistical adequacy flags for each track."""
|
279 |
+
|
280 |
+
adequacy = {}
|
281 |
+
|
282 |
+
for track_name in EVALUATION_TRACKS.keys():
|
283 |
+
track_data = tracks.get(track_name, {})
|
284 |
+
summary = track_data.get("summary", {})
|
285 |
+
|
286 |
+
min_required = EVALUATION_TRACKS[track_name][
|
287 |
+
"min_samples_per_pair"
|
288 |
+
] * summary.get("language_pairs_evaluated", 0)
|
289 |
+
is_adequate = summary.get("total_samples", 0) >= min_required
|
290 |
+
|
291 |
+
adequacy[f"{track_name}_adequate"] = bool(is_adequate)
|
292 |
+
|
293 |
+
return adequacy
|
294 |
+
|
295 |
+
|
296 |
+
def serialize_detailed_results(tracks: Dict, cross_track: Dict) -> Dict:
|
297 |
+
"""Serialize detailed results for storage."""
|
298 |
+
|
299 |
+
detailed = {}
|
300 |
+
|
301 |
+
for track_name in EVALUATION_TRACKS.keys():
|
302 |
+
track_data = tracks.get(track_name, {})
|
303 |
+
|
304 |
+
# Remove non-serializable data
|
305 |
+
safe_track_data = {}
|
306 |
+
for key, value in track_data.items():
|
307 |
+
if key != "sample_metrics": # Skip large DataFrames
|
308 |
+
safe_track_data[key] = value
|
309 |
+
|
310 |
+
detailed[f"detailed_{track_name}"] = json.dumps(safe_track_data)
|
311 |
+
|
312 |
+
detailed["cross_track_analysis"] = json.dumps(cross_track)
|
313 |
+
|
314 |
+
return detailed
|
315 |
+
|
316 |
+
|
317 |
+
def calculate_scientific_adequacy_score(evaluation_results: Dict) -> float:
|
318 |
+
"""Calculate overall scientific adequacy score (0-1)."""
|
319 |
+
|
320 |
+
tracks = evaluation_results.get("tracks", {})
|
321 |
+
|
322 |
+
adequacy_scores = []
|
323 |
+
|
324 |
+
for track_name in EVALUATION_TRACKS.keys():
|
325 |
+
track_data = tracks.get(track_name, {})
|
326 |
+
summary = track_data.get("summary", {})
|
327 |
+
|
328 |
+
if track_data.get("error"):
|
329 |
+
adequacy_scores.append(0.0)
|
330 |
+
continue
|
331 |
+
|
332 |
+
# Sample size adequacy
|
333 |
+
min_required = EVALUATION_TRACKS[track_name][
|
334 |
+
"min_samples_per_pair"
|
335 |
+
] * summary.get("language_pairs_evaluated", 0)
|
336 |
+
sample_adequacy = min(
|
337 |
+
summary.get("total_samples", 0) / max(min_required, 1), 1.0
|
338 |
+
)
|
339 |
+
|
340 |
+
# Coverage adequacy
|
341 |
+
total_possible_pairs = len(EVALUATION_TRACKS[track_name]["languages"]) * (
|
342 |
+
len(EVALUATION_TRACKS[track_name]["languages"]) - 1
|
343 |
+
)
|
344 |
+
coverage_adequacy = summary.get("language_pairs_evaluated", 0) / max(
|
345 |
+
total_possible_pairs, 1
|
346 |
+
)
|
347 |
+
|
348 |
+
# Track adequacy
|
349 |
+
track_adequacy = (sample_adequacy + coverage_adequacy) / 2
|
350 |
+
adequacy_scores.append(track_adequacy)
|
351 |
+
|
352 |
+
return float(np.mean(adequacy_scores))
|
353 |
+
|
354 |
+
|
355 |
+
def get_track_leaderboard(
|
356 |
+
df: pd.DataFrame,
|
357 |
+
track: str,
|
358 |
+
metric: str = "quality",
|
359 |
+
category_filter: str = "all",
|
360 |
+
min_adequacy: float = 0.0,
|
361 |
+
) -> pd.DataFrame:
|
362 |
+
"""Get leaderboard for a specific track with filtering."""
|
363 |
+
|
364 |
+
if df.empty:
|
365 |
+
return df
|
366 |
+
|
367 |
+
track_quality_col = f"{track}_{metric}"
|
368 |
+
track_adequate_col = f"{track}_adequate"
|
369 |
+
|
370 |
+
# Filter by adequacy
|
371 |
+
if min_adequacy > 0:
|
372 |
+
adequacy_mask = df["scientific_adequacy_score"] >= min_adequacy
|
373 |
+
df = df[adequacy_mask]
|
374 |
+
|
375 |
+
# Filter by category
|
376 |
+
if category_filter != "all":
|
377 |
+
df = df[df["model_category"] == category_filter]
|
378 |
+
|
379 |
+
# Filter to models that have this track
|
380 |
+
valid_mask = (df[track_quality_col] > 0) & df[track_adequate_col]
|
381 |
+
df = df[valid_mask]
|
382 |
+
|
383 |
+
if df.empty:
|
384 |
+
return df
|
385 |
+
|
386 |
+
# Sort by track-specific metric
|
387 |
+
df = df.sort_values(track_quality_col, ascending=False).reset_index(drop=True)
|
388 |
+
|
389 |
+
return df
|
390 |
+
|
391 |
+
|
392 |
+
def prepare_track_leaderboard_display(df: pd.DataFrame, track: str) -> pd.DataFrame:
|
393 |
+
"""Prepare track-specific leaderboard for display."""
|
394 |
+
|
395 |
if df.empty:
|
396 |
return df
|
397 |
+
|
398 |
+
# Select relevant columns for this track
|
399 |
+
base_columns = ["model_name", "author", "submission_date", "model_category"]
|
400 |
+
|
401 |
+
track_columns = [
|
402 |
+
f"{track}_quality",
|
403 |
+
f"{track}_bleu",
|
404 |
+
f"{track}_chrf",
|
405 |
+
f"{track}_ci_lower",
|
406 |
+
f"{track}_ci_upper",
|
407 |
+
f"{track}_samples",
|
408 |
+
f"{track}_pairs",
|
409 |
+
f"{track}_adequate",
|
410 |
]
|
411 |
+
|
412 |
# Only include columns that exist
|
413 |
+
available_columns = [
|
414 |
+
col for col in base_columns + track_columns if col in df.columns
|
415 |
+
]
|
416 |
display_df = df[available_columns].copy()
|
417 |
+
|
418 |
# Format numeric columns
|
419 |
numeric_format = {
|
420 |
+
f"{track}_quality": "{:.4f}",
|
421 |
+
f"{track}_bleu": "{:.2f}",
|
422 |
+
f"{track}_chrf": "{:.4f}",
|
423 |
+
f"{track}_ci_lower": "{:.4f}",
|
424 |
+
f"{track}_ci_upper": "{:.4f}",
|
|
|
425 |
}
|
426 |
+
|
427 |
for col, fmt in numeric_format.items():
|
428 |
if col in display_df.columns:
|
429 |
+
display_df[col] = display_df[col].apply(
|
430 |
+
lambda x: fmt.format(float(x)) if pd.notnull(x) else "0.0000"
|
431 |
+
)
|
432 |
+
|
433 |
+
# Format confidence intervals
|
434 |
+
if (
|
435 |
+
f"{track}_ci_lower" in display_df.columns
|
436 |
+
and f"{track}_ci_upper" in display_df.columns
|
437 |
+
):
|
438 |
+
display_df[f"{track}_confidence_interval"] = (
|
439 |
+
"["
|
440 |
+
+ display_df[f"{track}_ci_lower"]
|
441 |
+
+ ", "
|
442 |
+
+ display_df[f"{track}_ci_upper"]
|
443 |
+
+ "]"
|
444 |
+
)
|
445 |
+
# Remove individual CI columns for cleaner display
|
446 |
+
display_df = display_df.drop(columns=[f"{track}_ci_lower", f"{track}_ci_upper"])
|
447 |
+
|
448 |
# Format submission date
|
449 |
+
if "submission_date" in display_df.columns:
|
450 |
+
display_df["submission_date"] = pd.to_datetime(
|
451 |
+
display_df["submission_date"]
|
452 |
+
).dt.strftime("%Y-%m-%d")
|
453 |
+
|
454 |
# Rename columns for better display
|
455 |
+
track_name = EVALUATION_TRACKS[track]["name"].split()[0] # First word
|
456 |
column_renames = {
|
457 |
+
"model_name": "Model Name",
|
458 |
+
"author": "Author",
|
459 |
+
"submission_date": "Submitted",
|
460 |
+
"model_category": "Category",
|
461 |
+
f"{track}_quality": f"{track_name} Quality",
|
462 |
+
f"{track}_bleu": f"{track_name} BLEU",
|
463 |
+
f"{track}_chrf": f"{track_name} ChrF",
|
464 |
+
f"{track}_confidence_interval": "95% CI",
|
465 |
+
f"{track}_samples": "Samples",
|
466 |
+
f"{track}_pairs": "Pairs",
|
467 |
+
f"{track}_adequate": "Adequate",
|
|
|
|
|
468 |
}
|
469 |
+
|
470 |
display_df = display_df.rename(columns=column_renames)
|
471 |
+
|
472 |
return display_df
|
473 |
|
474 |
+
|
475 |
+
def get_scientific_leaderboard_stats(df: pd.DataFrame, track: str = None) -> Dict:
|
476 |
+
"""Get comprehensive statistics for the scientific leaderboard."""
|
477 |
+
|
478 |
if df.empty:
|
479 |
return {
|
480 |
+
"total_models": 0,
|
481 |
+
"models_by_category": {},
|
482 |
+
"track_statistics": {},
|
483 |
+
"adequacy_distribution": {},
|
484 |
+
"best_models_by_track": {},
|
|
|
|
|
485 |
}
|
486 |
+
|
|
|
487 |
stats = {
|
488 |
+
"total_models": len(df),
|
489 |
+
"models_by_category": df["model_category"].value_counts().to_dict(),
|
490 |
+
"adequacy_distribution": {},
|
491 |
+
"track_statistics": {},
|
492 |
+
"best_models_by_track": {},
|
|
|
|
|
|
|
493 |
}
|
494 |
+
|
495 |
+
# Adequacy distribution
|
496 |
+
adequacy_bins = pd.cut(
|
497 |
+
df["scientific_adequacy_score"],
|
498 |
+
bins=[0, 0.3, 0.6, 0.8, 1.0],
|
499 |
+
labels=["Poor", "Fair", "Good", "Excellent"],
|
500 |
+
)
|
501 |
+
stats["adequacy_distribution"] = adequacy_bins.value_counts().to_dict()
|
502 |
+
|
503 |
+
# Track-specific statistics
|
504 |
+
for track_name in EVALUATION_TRACKS.keys():
|
505 |
+
quality_col = f"{track_name}_quality"
|
506 |
+
adequate_col = f"{track_name}_adequate"
|
507 |
+
|
508 |
+
if quality_col in df.columns and adequate_col in df.columns:
|
509 |
+
track_models = df[df[adequate_col] & (df[quality_col] > 0)]
|
510 |
+
|
511 |
+
if len(track_models) > 0:
|
512 |
+
stats["track_statistics"][track_name] = {
|
513 |
+
"participating_models": len(track_models),
|
514 |
+
"avg_quality": float(track_models[quality_col].mean()),
|
515 |
+
"std_quality": float(track_models[quality_col].std()),
|
516 |
+
"best_quality": float(track_models[quality_col].max()),
|
517 |
+
}
|
518 |
+
|
519 |
+
# Best model for this track
|
520 |
+
best_model = track_models.loc[track_models[quality_col].idxmax()]
|
521 |
+
stats["best_models_by_track"][track_name] = {
|
522 |
+
"name": best_model["model_name"],
|
523 |
+
"category": best_model["model_category"],
|
524 |
+
"quality": float(best_model[quality_col]),
|
525 |
+
}
|
526 |
+
|
527 |
return stats
|
528 |
|
529 |
+
|
530 |
+
def perform_fair_comparison(
|
531 |
+
df: pd.DataFrame, model_names: List[str], shared_pairs_only: bool = True
|
532 |
+
) -> Dict:
|
533 |
+
"""Perform fair comparison between models using only shared language pairs."""
|
534 |
+
|
535 |
+
models = df[df["model_name"].isin(model_names)]
|
536 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
if len(models) == 0:
|
538 |
+
return {"error": "No models found"}
|
539 |
+
|
540 |
comparison = {
|
541 |
+
"models": list(models["model_name"]),
|
542 |
+
"fair_comparison_possible": True,
|
543 |
+
"track_comparisons": {},
|
544 |
+
"statistical_significance": {},
|
545 |
+
"recommendations": [],
|
546 |
}
|
547 |
+
|
548 |
+
# Check if fair comparison is possible
|
549 |
+
categories = models["model_category"].unique()
|
550 |
+
if len(categories) > 1:
|
551 |
+
comparison["recommendations"].append(
|
552 |
+
"⚠️ Comparing models from different categories - interpret results carefully"
|
553 |
+
)
|
554 |
+
|
555 |
+
# For each track, compare models
|
556 |
+
for track_name in EVALUATION_TRACKS.keys():
|
557 |
+
quality_col = f"{track_name}_quality"
|
558 |
+
adequate_col = f"{track_name}_adequate"
|
559 |
+
|
560 |
+
track_models = models[models[adequate_col] & (models[quality_col] > 0)]
|
561 |
+
|
562 |
+
if len(track_models) >= 2:
|
563 |
+
comparison["track_comparisons"][track_name] = {
|
564 |
+
"participating_models": len(track_models),
|
565 |
+
"quality_scores": dict(
|
566 |
+
zip(track_models["model_name"], track_models[quality_col])
|
567 |
+
),
|
568 |
+
"confidence_intervals": {},
|
|
|
|
|
569 |
}
|
570 |
+
|
571 |
+
# Extract confidence intervals
|
572 |
+
for _, model in track_models.iterrows():
|
573 |
+
ci_lower = model.get(f"{track_name}_ci_lower", 0)
|
574 |
+
ci_upper = model.get(f"{track_name}_ci_upper", 0)
|
575 |
+
comparison["track_comparisons"][track_name]["confidence_intervals"][
|
576 |
+
model["model_name"]
|
577 |
+
] = [ci_lower, ci_upper]
|
578 |
+
|
579 |
return comparison
|
580 |
|
581 |
+
|
582 |
+
def export_scientific_leaderboard(
|
583 |
+
df: pd.DataFrame,
|
584 |
+
track: str = "all",
|
585 |
+
format: str = "csv",
|
586 |
+
include_detailed: bool = False,
|
587 |
+
) -> str:
|
588 |
+
"""Export scientific leaderboard in specified format."""
|
589 |
+
|
590 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
591 |
+
|
592 |
+
if track != "all":
|
593 |
+
# Export specific track
|
594 |
+
export_df = prepare_track_leaderboard_display(df, track)
|
595 |
+
filename_prefix = f"salt_leaderboard_{track}_{timestamp}"
|
596 |
else:
|
597 |
+
# Export all tracks
|
598 |
+
if include_detailed:
|
599 |
+
export_df = df.copy()
|
600 |
+
else:
|
601 |
+
# Select essential columns
|
602 |
+
essential_columns = [
|
603 |
+
"model_name",
|
604 |
+
"author",
|
605 |
+
"submission_date",
|
606 |
+
"model_category",
|
607 |
+
"scientific_adequacy_score",
|
608 |
+
]
|
609 |
+
|
610 |
+
# Add track-specific quality scores
|
611 |
+
for track_name in EVALUATION_TRACKS.keys():
|
612 |
+
essential_columns.extend(
|
613 |
+
[
|
614 |
+
f"{track_name}_quality",
|
615 |
+
f"{track_name}_adequate",
|
616 |
+
]
|
617 |
+
)
|
618 |
+
|
619 |
+
available_columns = [col for col in essential_columns if col in df.columns]
|
620 |
+
export_df = df[available_columns].copy()
|
621 |
+
|
622 |
+
filename_prefix = f"salt_leaderboard_scientific_{timestamp}"
|
623 |
+
|
624 |
+
# Export in specified format
|
625 |
+
if format == "csv":
|
626 |
+
filename = f"{filename_prefix}.csv"
|
627 |
export_df.to_csv(filename, index=False)
|
628 |
+
elif format == "json":
|
629 |
+
filename = f"{filename_prefix}.json"
|
630 |
+
export_df.to_json(filename, orient="records", indent=2)
|
631 |
+
elif format == "xlsx":
|
632 |
+
filename = f"{filename_prefix}.xlsx"
|
633 |
export_df.to_excel(filename, index=False)
|
634 |
else:
|
635 |
raise ValueError(f"Unsupported format: {format}")
|
|
|
|
|
636 |
|
637 |
+
return filename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|