Spaces:
Paused
Paused
File size: 3,778 Bytes
1bafe30 9231de3 1bafe30 10a36a8 1bafe30 10a36a8 1bafe30 9231de3 1bafe30 10a36a8 9231de3 10a36a8 9231de3 10a36a8 9231de3 10a36a8 9231de3 1bafe30 9231de3 1bafe30 10a36a8 1bafe30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
from PIL import Image
# Import the pipeline from diffusers
from diffusers import FluxKontextPipeline
# --- Constants and Model Loading ---
MAX_SEED = np.iinfo(np.int32).max
# Load the pretrained model
try:
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
except Exception as e:
pipe = None
print(f"Warning: Could not load the model on CUDA. GPU is required. Error: {e}")
# --- Core Inference Function for ChatInterface ---
@spaces.GPU
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
"""
Performs image generation or editing based on user input from the chat interface.
"""
if pipe is None:
raise gr.Error("Model could not be loaded. This could be due to no access to the model or no CUDA-enabled GPU.")
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(int(seed))
input_image = None
if files:
print(f"Received image: {files[0]}")
input_image = Image.open(files[0]).convert("RGB")
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
else:
print(f"Received prompt for text-to-image: {prompt}")
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
return image
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
# --- FIX 2: Remove examples with external URLs that cause 403 errors ---
# Instead, provide text-only examples that work without external image dependencies
examples = [
[
{"text": "A cute robot reading a book in a cozy library", "files": []},
42, False, 2.5, 28
],
[
{"text": "A majestic lion standing on a rocky cliff at sunset", "files": []},
12345, False, 3.0, 25
],
[
{"text": "A futuristic cityscape with flying cars and neon lights", "files": []},
54321, False, 2.0, 30
],
]
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev]",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
examples=examples,
theme="soft"
)
if __name__ == "__main__":
demo.launch() |