File size: 3,778 Bytes
1bafe30
 
 
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
10a36a8
 
 
 
1bafe30
 
 
 
 
 
 
 
 
 
 
 
10a36a8
1bafe30
 
 
 
 
 
 
 
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a36a8
 
9231de3
 
10a36a8
9231de3
 
 
10a36a8
9231de3
 
 
10a36a8
9231de3
 
 
 
1bafe30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9231de3
1bafe30
 
 
 
 
 
 
10a36a8
1bafe30
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
from PIL import Image

# Import the pipeline from diffusers
from diffusers import FluxKontextPipeline

# --- Constants and Model Loading ---
MAX_SEED = np.iinfo(np.int32).max

# Load the pretrained model
try:
    pipe = FluxKontextPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-Kontext-dev", 
        torch_dtype=torch.bfloat16,
    ).to("cuda")
except Exception as e:
    pipe = None
    print(f"Warning: Could not load the model on CUDA. GPU is required. Error: {e}")

# --- Core Inference Function for ChatInterface ---

@spaces.GPU
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    if pipe is None:
        raise gr.Error("Model could not be loaded. This could be due to no access to the model or no CUDA-enabled GPU.")

    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device="cuda").manual_seed(int(seed))

    input_image = None
    if files:
        print(f"Received image: {files[0]}")
        input_image = Image.open(files[0]).convert("RGB")
        image = pipe(
            image=input_image,
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=generator,
        ).images[0]
    else:
        print(f"Received prompt for text-to-image: {prompt}")
        image = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=generator,
        ).images[0]
        
    return image

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

# --- FIX 2: Remove examples with external URLs that cause 403 errors ---
# Instead, provide text-only examples that work without external image dependencies
examples = [
    [
        {"text": "A cute robot reading a book in a cozy library", "files": []}, 
        42, False, 2.5, 28
    ],
    [
        {"text": "A majestic lion standing on a rocky cliff at sunset", "files": []},
        12345, False, 3.0, 25
    ],
    [
        {"text": "A futuristic cityscape with flying cars and neon lights", "files": []},
        54321, False, 2.0, 30
    ],
]

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev]",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext</b> model.
    <br>
    To edit an image, upload it and type your instructions (e.g., "Add a hat").
    <br>
    To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Type a prompt and/or upload an image...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    examples=examples,
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()