File size: 4,899 Bytes
1bafe30
 
 
9231de3
d1b130d
 
 
abb5336
d1b130d
1bafe30
920a718
1bafe30
 
d1b130d
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc0238
d1b130d
 
 
 
 
 
1bafe30
920a718
d1b130d
1bafe30
 
 
d1b130d
 
 
1bafe30
 
 
 
 
 
 
 
 
 
 
 
943caab
 
d1b130d
 
 
 
 
 
 
 
 
 
 
 
943caab
 
d1b130d
 
 
abb5336
d1b130d
1bafe30
abb5336
d1b130d
 
abb5336
d1b130d
1bafe30
 
d1b130d
 
abb5336
1bafe30
abb5336
d1b130d
 
abb5336
d1b130d
 
 
a69ad7c
1bafe30
 
 
 
 
 
 
 
d1b130d
 
9231de3
1bafe30
 
d1b130d
1bafe30
d1b130d
1bafe30
 
 
 
 
 
 
d1b130d
1bafe30
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
d1b130d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif  # For HEIF/AVIF support
from huggingface_hub import InferenceClient
import io

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max

# --- Global client variable ---
client = None

def load_client():
    """Initialize the Inference Client"""
    global client
    if client is None:
        # Register HEIF opener with PIL for AVIF/HEIF support
        pillow_heif.register_heif_opener()
        
        # Get token from environment variable
        hf_token = os.getenv("HF_TOKEN")
        if hf_token:
            client = InferenceClient(
                provider="fal-ai",
                api_key=hf_token,
                bill_to="huggingface",
            )
        else:
            raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
    return client

# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    # Load client
    client = load_client()
    
    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    input_image = None
    if files:
        print(f"Received image: {files[0]}")
        try:
            # Try to open and convert the image
            input_image = Image.open(files[0])
            # Convert to RGB if needed (handles RGBA, P, etc.)
            if input_image.mode != "RGB":
                input_image = input_image.convert("RGB")
            # Auto-orient the image based on EXIF data
            input_image = ImageOps.exif_transpose(input_image)
            
            # Convert PIL image to bytes for the API
            img_byte_arr = io.BytesIO()
            input_image.save(img_byte_arr, format='PNG')
            input_image_bytes = img_byte_arr.getvalue()
            
        except Exception as e:
            raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
            
        # Use image_to_image for editing
        progress(0.1, desc="Processing image...")
        image = client.image_to_image(
            input_image_bytes,
            prompt=prompt,
            model="black-forest-labs/FLUX.1-Kontext-dev",
            # Note: guidance_scale and steps might not be supported by the API
            # Check the API documentation for available parameters
        )
        progress(1.0, desc="Complete!")
    else:
        print(f"Received prompt for text-to-image: {prompt}")
        # Use text_to_image for generation
        progress(0.1, desc="Generating image...")
        image = client.text_to_image(
            prompt=prompt,
            model="black-forest-labs/FLUX.1-Kontext-dev",
            # Note: guidance_scale and steps might not be supported by the API
            # Check the API documentation for available parameters
        )
        progress(1.0, desc="Complete!")
    
    # The client returns a PIL Image object
    return gr.Image(value=image)

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

# Note: The Inference Client API may not support all parameters like guidance_scale and steps
# Check the API documentation for supported parameters

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev] - Inference Client",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext</b> model using Hugging Face Inference Client with fal-ai provider.
    <br>
    To edit an image, upload it and type your instructions (e.g., "Add a hat").
    <br>
    To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    multimodal=True,
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Type a prompt and/or upload an image...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()