Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,899 Bytes
1bafe30 9231de3 d1b130d abb5336 d1b130d 1bafe30 920a718 1bafe30 d1b130d 3dc0238 d1b130d 1bafe30 920a718 d1b130d 1bafe30 d1b130d 1bafe30 943caab d1b130d 943caab d1b130d abb5336 d1b130d 1bafe30 abb5336 d1b130d abb5336 d1b130d 1bafe30 d1b130d abb5336 1bafe30 abb5336 d1b130d abb5336 d1b130d a69ad7c 1bafe30 d1b130d 9231de3 1bafe30 d1b130d 1bafe30 d1b130d 1bafe30 d1b130d 1bafe30 9231de3 1bafe30 d1b130d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
from huggingface_hub import InferenceClient
import io
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
# --- Global client variable ---
client = None
def load_client():
"""Initialize the Inference Client"""
global client
if client is None:
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if hf_token:
client = InferenceClient(
provider="fal-ai",
api_key=hf_token,
bill_to="huggingface",
)
else:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return client
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Load client
client = load_client()
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image = None
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes for the API
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
input_image_bytes = img_byte_arr.getvalue()
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
# Use image_to_image for editing
progress(0.1, desc="Processing image...")
image = client.image_to_image(
input_image_bytes,
prompt=prompt,
model="black-forest-labs/FLUX.1-Kontext-dev",
# Note: guidance_scale and steps might not be supported by the API
# Check the API documentation for available parameters
)
progress(1.0, desc="Complete!")
else:
print(f"Received prompt for text-to-image: {prompt}")
# Use text_to_image for generation
progress(0.1, desc="Generating image...")
image = client.text_to_image(
prompt=prompt,
model="black-forest-labs/FLUX.1-Kontext-dev",
# Note: guidance_scale and steps might not be supported by the API
# Check the API documentation for available parameters
)
progress(1.0, desc="Complete!")
# The client returns a PIL Image object
return gr.Image(value=image)
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
# Note: The Inference Client API may not support all parameters like guidance_scale and steps
# Check the API documentation for supported parameters
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - Inference Client",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model using Hugging Face Inference Client with fal-ai provider.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |