File size: 9,920 Bytes
1bafe30
 
 
9231de3
d6ceac3
d1b130d
 
d6ceac3
1bafe30
920a718
1bafe30
 
d6ceac3
 
 
 
 
 
f5f7379
 
 
 
d6ceac3
d1b130d
d6ceac3
09f3aa3
d6ceac3
 
09f3aa3
17cc4e0
d6ceac3
17cc4e0
fcf74fc
 
 
09f3aa3
 
d6ceac3
 
09f3aa3
 
d6ceac3
17cc4e0
d6ceac3
 
17cc4e0
618f8cb
d6ceac3
618f8cb
d6ceac3
618f8cb
 
 
d6ceac3
fc5bd53
d6ceac3
 
fc5bd53
d6ceac3
 
 
 
 
 
 
 
09f3aa3
 
d6ceac3
 
 
 
 
 
 
09f3aa3
d6ceac3
 
 
 
09f3aa3
 
 
 
 
 
 
fc5bd53
 
 
d6ceac3
fcf74fc
 
fc5bd53
09f3aa3
 
 
 
 
 
fc5bd53
fcf74fc
5c6ea42
 
fc5bd53
 
d6ceac3
5c6ea42
 
fc5bd53
 
d6ceac3
09f3aa3
d6ceac3
fcf74fc
d6ceac3
 
 
 
 
 
09f3aa3
 
 
 
 
 
0cea930
d6ceac3
 
 
 
09f3aa3
 
 
 
 
1bafe30
920a718
d1b130d
1bafe30
 
 
 
 
 
 
 
 
 
 
 
 
 
943caab
 
d1b130d
 
 
 
 
 
 
e1f8042
d1b130d
 
f5f7379
e1f8042
f5f7379
943caab
 
d1b130d
 
1bafe30
d6ceac3
 
 
f5f7379
 
d6ceac3
 
f5f7379
90342ab
c847b55
d6ceac3
c847b55
90342ab
d6ceac3
c847b55
 
 
d6ceac3
 
c847b55
 
d6ceac3
f5f7379
d1b130d
f5f7379
 
c847b55
 
 
f5f7379
 
1bafe30
 
 
 
 
 
 
 
 
 
d6ceac3
1bafe30
d6ceac3
1bafe30
d6ceac3
1bafe30
d6ceac3
1bafe30
 
 
d1b130d
1bafe30
 
d6ceac3
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
d1b130d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif  # For HEIF/AVIF support
import io

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max

def load_client():
    """Initialize the Inference Client"""
    # Register HEIF opener with PIL for AVIF/HEIF support
    pillow_heif.register_heif_opener()
    
    # Get token from environment variable
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
    
    return hf_token

def query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
    """Send request to the API using HF Router for fal.ai provider"""
    import requests
    import json
    import base64
    
    hf_token = load_client()
    
    if progress_callback:
        progress_callback(0.1, "Submitting request...")
    
    # Use the HF router to access fal.ai provider
    url = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev"
    headers = {
        "Authorization": f"Bearer {hf_token}",
        "X-HF-Bill-To": "huggingface",
        "Content-Type": "application/json"
    }
    
    # Convert image to base64
    image_base64 = base64.b64encode(image_bytes).decode('utf-8')
    
    # Fixed payload structure - prompt should be at the top level
    payload = {
        "prompt": prompt,
        "inputs": image_base64,
        "seed": seed,
        "guidance_scale": guidance_scale,
        "num_inference_steps": steps
    }
    
    if progress_callback:
        progress_callback(0.3, "Processing request...")
    
    try:
        response = requests.post(url, headers=headers, json=payload, timeout=300)
        
        if response.status_code != 200:
            raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
        
        # Check if response is image bytes or JSON
        content_type = response.headers.get('content-type', '').lower()
        print(f"Response content type: {content_type}")
        print(f"Response length: {len(response.content)}")
        
        if 'image/' in content_type:
            # Direct image response
            if progress_callback:
                progress_callback(1.0, "Complete!")
            return response.content
        elif 'application/json' in content_type:
            # JSON response - might be queue status or result
            try:
                json_response = response.json()
                print(f"JSON response: {json_response}")
                
                # Check if it's a queue response
                if json_response.get("status") == "IN_QUEUE":
                    if progress_callback:
                        progress_callback(0.4, "Request queued, please wait...")
                    raise gr.Error("Request is being processed. Please try again in a few moments.")
                
                # Handle immediate completion or result
                if 'images' in json_response and len(json_response['images']) > 0:
                    image_info = json_response['images'][0]
                    if isinstance(image_info, dict) and 'url' in image_info:
                        # Download image from URL
                        if progress_callback:
                            progress_callback(0.9, "Downloading result...")
                        img_response = requests.get(image_info['url'])
                        if img_response.status_code == 200:
                            if progress_callback:
                                progress_callback(1.0, "Complete!")
                            return img_response.content
                        else:
                            raise gr.Error(f"Failed to download image: {img_response.status_code}")
                    elif isinstance(image_info, str):
                        # Base64 encoded image
                        if progress_callback:
                            progress_callback(1.0, "Complete!")
                        return base64.b64decode(image_info)
                elif 'image' in json_response:
                    # Single image field
                    if progress_callback:
                        progress_callback(1.0, "Complete!")
                    return base64.b64decode(json_response['image'])
                else:
                    raise gr.Error(f"Unexpected JSON response format: {json_response}")
            except json.JSONDecodeError as e:
                raise gr.Error(f"Failed to parse JSON response: {str(e)}")
        else:
            # Try to treat as image bytes
            if len(response.content) > 1000:  # Likely an image
                if progress_callback:
                    progress_callback(1.0, "Complete!")
                return response.content
            else:
                # Small response, probably an error
                try:
                    error_text = response.content.decode('utf-8')
                    raise gr.Error(f"Unexpected response: {error_text[:500]}")
                except:
                    raise gr.Error(f"Unexpected response format. Content length: {len(response.content)}")
                
    except requests.exceptions.Timeout:
        raise gr.Error("Request timed out. Please try again.")
    except requests.exceptions.RequestException as e:
        raise gr.Error(f"Request failed: {str(e)}")
    except gr.Error:
        # Re-raise Gradio errors as-is
        raise
    except Exception as e:
        raise gr.Error(f"Unexpected error: {str(e)}")

# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    if files:
        print(f"Received image: {files[0]}")
        try:
            # Try to open and convert the image
            input_image = Image.open(files[0])
            # Convert to RGB if needed (handles RGBA, P, etc.)
            if input_image.mode != "RGB":
                input_image = input_image.convert("RGB")
            # Auto-orient the image based on EXIF data
            input_image = ImageOps.exif_transpose(input_image)
            
            # Convert PIL image to bytes
            img_byte_arr = io.BytesIO()
            input_image.save(img_byte_arr, format='PNG')
            img_byte_arr.seek(0)
            image_bytes = img_byte_arr.getvalue()
            
        except Exception as e:
            raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
            
        progress(0.1, desc="Processing image...")
    else:
        # For text-to-image, we need a placeholder image or handle differently
        # FLUX.1 Kontext is primarily an image-to-image model
        raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")

    try:
        # Make API request
        result_bytes = query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
        
        # Try to convert response bytes to PIL Image
        try:
            image = Image.open(io.BytesIO(result_bytes))
        except Exception as img_error:
            print(f"Failed to open image: {img_error}")
            print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
            
            # Try to decode as base64 if direct opening failed
            try:
                import base64
                decoded_bytes = base64.b64decode(result_bytes)
                image = Image.open(io.BytesIO(decoded_bytes))
            except:
                raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
        
        progress(1.0, desc="Complete!")
        return gr.Image(value=image)
        
    except gr.Error:
        # Re-raise gradio errors as-is
        raise
    except Exception as e:
        raise gr.Error(f"Failed to generate image: {str(e)}")

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev] - HF Inference Client",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face Inference Client approach.
    <br>
    <b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
    <br>
    This model specializes in understanding context and making precise edits to your images.
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    multimodal=True,
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Upload an image and type your editing instructions...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()