Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,920 Bytes
1bafe30 9231de3 d6ceac3 d1b130d d6ceac3 1bafe30 920a718 1bafe30 d6ceac3 f5f7379 d6ceac3 d1b130d d6ceac3 09f3aa3 d6ceac3 09f3aa3 17cc4e0 d6ceac3 17cc4e0 fcf74fc 09f3aa3 d6ceac3 09f3aa3 d6ceac3 17cc4e0 d6ceac3 17cc4e0 618f8cb d6ceac3 618f8cb d6ceac3 618f8cb d6ceac3 fc5bd53 d6ceac3 fc5bd53 d6ceac3 09f3aa3 d6ceac3 09f3aa3 d6ceac3 09f3aa3 fc5bd53 d6ceac3 fcf74fc fc5bd53 09f3aa3 fc5bd53 fcf74fc 5c6ea42 fc5bd53 d6ceac3 5c6ea42 fc5bd53 d6ceac3 09f3aa3 d6ceac3 fcf74fc d6ceac3 09f3aa3 0cea930 d6ceac3 09f3aa3 1bafe30 920a718 d1b130d 1bafe30 943caab d1b130d e1f8042 d1b130d f5f7379 e1f8042 f5f7379 943caab d1b130d 1bafe30 d6ceac3 f5f7379 d6ceac3 f5f7379 90342ab c847b55 d6ceac3 c847b55 90342ab d6ceac3 c847b55 d6ceac3 c847b55 d6ceac3 f5f7379 d1b130d f5f7379 c847b55 f5f7379 1bafe30 d6ceac3 1bafe30 d6ceac3 1bafe30 d6ceac3 1bafe30 d6ceac3 1bafe30 d1b130d 1bafe30 d6ceac3 9231de3 1bafe30 d1b130d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
import io
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
def load_client():
"""Initialize the Inference Client"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return hf_token
def query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
"""Send request to the API using HF Router for fal.ai provider"""
import requests
import json
import base64
hf_token = load_client()
if progress_callback:
progress_callback(0.1, "Submitting request...")
# Use the HF router to access fal.ai provider
url = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev"
headers = {
"Authorization": f"Bearer {hf_token}",
"X-HF-Bill-To": "huggingface",
"Content-Type": "application/json"
}
# Convert image to base64
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Fixed payload structure - prompt should be at the top level
payload = {
"prompt": prompt,
"inputs": image_base64,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
}
if progress_callback:
progress_callback(0.3, "Processing request...")
try:
response = requests.post(url, headers=headers, json=payload, timeout=300)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
# Check if response is image bytes or JSON
content_type = response.headers.get('content-type', '').lower()
print(f"Response content type: {content_type}")
print(f"Response length: {len(response.content)}")
if 'image/' in content_type:
# Direct image response
if progress_callback:
progress_callback(1.0, "Complete!")
return response.content
elif 'application/json' in content_type:
# JSON response - might be queue status or result
try:
json_response = response.json()
print(f"JSON response: {json_response}")
# Check if it's a queue response
if json_response.get("status") == "IN_QUEUE":
if progress_callback:
progress_callback(0.4, "Request queued, please wait...")
raise gr.Error("Request is being processed. Please try again in a few moments.")
# Handle immediate completion or result
if 'images' in json_response and len(json_response['images']) > 0:
image_info = json_response['images'][0]
if isinstance(image_info, dict) and 'url' in image_info:
# Download image from URL
if progress_callback:
progress_callback(0.9, "Downloading result...")
img_response = requests.get(image_info['url'])
if img_response.status_code == 200:
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
else:
raise gr.Error(f"Failed to download image: {img_response.status_code}")
elif isinstance(image_info, str):
# Base64 encoded image
if progress_callback:
progress_callback(1.0, "Complete!")
return base64.b64decode(image_info)
elif 'image' in json_response:
# Single image field
if progress_callback:
progress_callback(1.0, "Complete!")
return base64.b64decode(json_response['image'])
else:
raise gr.Error(f"Unexpected JSON response format: {json_response}")
except json.JSONDecodeError as e:
raise gr.Error(f"Failed to parse JSON response: {str(e)}")
else:
# Try to treat as image bytes
if len(response.content) > 1000: # Likely an image
if progress_callback:
progress_callback(1.0, "Complete!")
return response.content
else:
# Small response, probably an error
try:
error_text = response.content.decode('utf-8')
raise gr.Error(f"Unexpected response: {error_text[:500]}")
except:
raise gr.Error(f"Unexpected response format. Content length: {len(response.content)}")
except requests.exceptions.Timeout:
raise gr.Error("Request timed out. Please try again.")
except requests.exceptions.RequestException as e:
raise gr.Error(f"Request failed: {str(e)}")
except gr.Error:
# Re-raise Gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Unexpected error: {str(e)}")
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.getvalue()
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
# For text-to-image, we need a placeholder image or handle differently
# FLUX.1 Kontext is primarily an image-to-image model
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
try:
# Make API request
result_bytes = query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
# Try to convert response bytes to PIL Image
try:
image = Image.open(io.BytesIO(result_bytes))
except Exception as img_error:
print(f"Failed to open image: {img_error}")
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
# Try to decode as base64 if direct opening failed
try:
import base64
decoded_bytes = base64.b64decode(result_bytes)
image = Image.open(io.BytesIO(decoded_bytes))
except:
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - HF Inference Client",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face Inference Client approach.
<br>
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
<br>
This model specializes in understanding context and making precise edits to your images.
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Upload an image and type your editing instructions...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |