File size: 3,957 Bytes
1bafe30
 
 
 
 
9231de3
1bafe30
 
 
 
 
920a718
1bafe30
 
920a718
 
1bafe30
920a718
 
 
 
642f1c7
 
 
 
 
 
 
 
 
 
920a718
1bafe30
920a718
 
1bafe30
 
 
 
920a718
 
 
 
1bafe30
 
 
 
 
 
 
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
920a718
 
 
 
bffe891
c4c2a88
 
1bafe30
 
 
 
 
 
 
 
920a718
642f1c7
 
9231de3
1bafe30
 
 
 
920a718
1bafe30
 
 
 
 
 
 
c4c2a88
1bafe30
 
 
9231de3
1bafe30
 
 
 
 
 
 
10a36a8
1bafe30
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
from PIL import Image

# Import the pipeline from diffusers
from diffusers import FluxKontextPipeline

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max

# --- Global pipeline variable ---
pipe = None

def load_model():
    """Load the model on CPU first, then move to GPU when needed"""
    global pipe
    if pipe is None:
        # Get token from environment variable
        hf_token = os.getenv("HF_TOKEN")
        if hf_token:
            pipe = FluxKontextPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-Kontext-dev", 
                torch_dtype=torch.bfloat16,
                token=hf_token,
            )
        else:
            raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
    return pipe

# --- Core Inference Function for ChatInterface ---
@spaces.GPU(duration=120)  # Set duration based on expected inference time
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    # Load and move model to GPU within the decorated function
    pipe = load_model()
    pipe = pipe.to("cuda")
    
    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device="cuda").manual_seed(int(seed))

    input_image = None
    if files:
        print(f"Received image: {files[0]}")
        input_image = Image.open(files[0]).convert("RGB")
        image = pipe(
            image=input_image,
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=generator,
        ).images[0]
    else:
        print(f"Received prompt for text-to-image: {prompt}")
        image = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=generator,
        ).images[0]
    
    # Move model back to CPU to free GPU memory
    pipe = pipe.to("cpu")
    torch.cuda.empty_cache()
    
    # Return the PIL Image directly - ChatInterface will handle it properly
    return image

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

# --- Examples without external URLs ---
# Remove examples temporarily to avoid format issues
examples = None

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev]",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext</b> model running on ZeroGPU.
    <br>
    To edit an image, upload it and type your instructions (e.g., "Add a hat").
    <br>
    To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    multimodal=True,  # This is important for MultimodalTextbox to work
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Type a prompt and/or upload an image...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    examples=examples,
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()