Spaces:
Paused
Paused
File size: 7,606 Bytes
1bafe30 9231de3 f5f7379 d1b130d 1bafe30 920a718 1bafe30 f5f7379 1bafe30 f5f7379 d1b130d f5f7379 c847b55 1bafe30 920a718 d1b130d 1bafe30 f5f7379 d1b130d 1bafe30 f5f7379 1bafe30 943caab d1b130d f5f7379 d1b130d f5f7379 d1b130d 943caab d1b130d 1bafe30 f5f7379 d1b130d f5f7379 c847b55 f5f7379 d1b130d f5f7379 c847b55 f5f7379 1bafe30 f5f7379 1bafe30 f5f7379 1bafe30 d1b130d 1bafe30 9231de3 1bafe30 d1b130d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import numpy as np
import random
import os
import base64
import requests
import io
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue"
def get_headers():
"""Get headers for API requests"""
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return {
"Authorization": f"Bearer {hf_token}",
"X-HF-Bill-To": "huggingface"
}
def query_api(payload):
"""Send request to the API and return response"""
headers = get_headers()
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
# Debug: Check response content type and first few bytes
print(f"Response status: {response.status_code}")
print(f"Response headers: {dict(response.headers)}")
print(f"Response content type: {response.headers.get('content-type', 'unknown')}")
print(f"Response content length: {len(response.content)}")
print(f"First 200 chars of response: {response.content[:200]}")
# Check if response is JSON (error case) or binary (image case)
content_type = response.headers.get('content-type', '').lower()
if 'application/json' in content_type:
# Response is JSON, might contain base64 image or error
try:
json_response = response.json()
print(f"JSON response: {json_response}")
# Check if there's a base64 image in the response
if 'image' in json_response:
# Decode base64 image
image_data = base64.b64decode(json_response['image'])
return image_data
elif 'images' in json_response and len(json_response['images']) > 0:
# Multiple images, take the first one
image_data = base64.b64decode(json_response['images'][0])
return image_data
else:
raise gr.Error(f"Unexpected JSON response format: {json_response}")
except Exception as e:
raise gr.Error(f"Failed to parse JSON response: {str(e)}")
elif 'image/' in content_type:
# Response is direct image bytes
return response.content
else:
# Try to decode as base64 first, then as direct bytes
try:
# Maybe the entire response is base64 encoded
image_data = base64.b64decode(response.content)
return image_data
except:
# Return as-is and let PIL try to handle it
return response.content
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Prepare the payload
payload = {
"parameters": {
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
}
}
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to base64 for the API
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
# Add image to payload for image-to-image
payload["inputs"] = image_base64
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
print(f"Received prompt for text-to-image: {prompt}")
# For text-to-image, we don't need the inputs field
progress(0.1, desc="Generating image...")
try:
# Make API request
image_bytes = query_api(payload)
# Try to convert response bytes to PIL Image with better error handling
try:
image = Image.open(io.BytesIO(image_bytes))
except Exception as img_error:
print(f"Failed to open image directly: {img_error}")
# Maybe it's a different format, try to save and examine
with open('/tmp/debug_response.bin', 'wb') as f:
f.write(image_bytes)
print(f"Saved response to /tmp/debug_response.bin for debugging")
# Try to decode as base64 if direct opening failed
try:
decoded_bytes = base64.b64decode(image_bytes)
image = Image.open(io.BytesIO(decoded_bytes))
except:
raise gr.Error(f"Could not process API response as image. Response type: {type(image_bytes)}, Length: {len(image_bytes) if isinstance(image_bytes, (bytes, str)) else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - Direct API",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model using direct API calls with requests.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch() |