akhaliq's picture
akhaliq HF Staff
Update app.py
01bf5a7 verified
raw
history blame
9.69 kB
import gradio as gr
import numpy as np
import random
import os
import tempfile
import subprocess
import json
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
import io
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
def setup_node_environment():
"""Setup Node.js environment and install required packages"""
try:
# Check if node is available
result = subprocess.run(['node', '--version'], capture_output=True, text=True)
if result.returncode != 0:
raise gr.Error("Node.js is not installed. Please install Node.js to use this feature.")
# Check if @huggingface/inference is installed, if not install it
package_check = subprocess.run(['npm', 'list', '@huggingface/inference'], capture_output=True, text=True)
if package_check.returncode != 0:
print("Installing @huggingface/inference package...")
install_result = subprocess.run(['npm', 'install', '@huggingface/inference'], capture_output=True, text=True)
if install_result.returncode != 0:
raise gr.Error(f"Failed to install @huggingface/inference: {install_result.stderr}")
return True
except FileNotFoundError:
raise gr.Error("Node.js or npm not found. Please install Node.js and npm.")
def create_js_inference_script(image_path, prompt, hf_token):
"""Create JavaScript inference script"""
js_code = f"""
const {{ InferenceClient }} = require("@huggingface/inference");
const fs = require("fs");
async function runInference() {{
try {{
const client = new InferenceClient("{hf_token}");
const data = fs.readFileSync("{image_path}");
const image = await client.imageToImage({{
provider: "replicate",
model: "black-forest-labs/FLUX.1-Kontext-dev",
inputs: data,
parameters: {{ prompt: "{prompt}" }},
}}, {{
billTo: "huggingface",
}});
// Convert blob to buffer
const arrayBuffer = await image.arrayBuffer();
const buffer = Buffer.from(arrayBuffer);
// Output as base64 for Python to read
const base64 = buffer.toString('base64');
console.log(JSON.stringify({{
success: true,
image_base64: base64,
content_type: image.type || 'image/jpeg'
}}));
}} catch (error) {{
console.log(JSON.stringify({{
success: false,
error: error.message
}}));
process.exit(1);
}}
}}
runInference();
"""
return js_code
def query_api_js(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
"""Send request using JavaScript HF Inference Client"""
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the environment.")
if progress_callback:
progress_callback(0.1, "Setting up Node.js environment...")
# Setup Node.js environment
setup_node_environment()
if progress_callback:
progress_callback(0.2, "Preparing image...")
# Create a temporary file for the image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
temp_file.write(image_bytes)
temp_image_path = temp_file.name
# Create temporary JavaScript file
with tempfile.NamedTemporaryFile(mode='w', suffix='.js', delete=False) as js_file:
js_code = create_js_inference_script(temp_image_path, prompt.replace('"', '\\"'), hf_token)
js_file.write(js_code)
js_file_path = js_file.name
try:
if progress_callback:
progress_callback(0.3, "Running JavaScript inference...")
# Run the JavaScript code
result = subprocess.run(
['node', js_file_path],
capture_output=True,
text=True,
timeout=300 # 5 minute timeout
)
if progress_callback:
progress_callback(0.8, "Processing result...")
if result.returncode != 0:
raise gr.Error(f"JavaScript inference failed: {result.stderr}")
# Parse the JSON output
try:
output = json.loads(result.stdout.strip())
except json.JSONDecodeError:
raise gr.Error(f"Failed to parse JavaScript output: {result.stdout}")
if not output.get('success'):
raise gr.Error(f"Inference error: {output.get('error', 'Unknown error')}")
if progress_callback:
progress_callback(0.9, "Decoding image...")
# Decode base64 image
import base64
image_data = base64.b64decode(output['image_base64'])
if progress_callback:
progress_callback(1.0, "Complete!")
return image_data
except subprocess.TimeoutExpired:
raise gr.Error("Inference timed out. Please try again.")
except Exception as e:
raise gr.Error(f"Error running JavaScript inference: {str(e)}")
finally:
# Clean up temporary files
try:
os.unlink(temp_image_path)
os.unlink(js_file_path)
except:
pass
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if files:
print(f"Received image: {files[0]}")
try:
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.getvalue()
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
# For text-to-image, we need a placeholder image or handle differently
# FLUX.1 Kontext is primarily an image-to-image model
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
try:
# Make API request using JavaScript
result_bytes = query_api_js(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
# Try to convert response bytes to PIL Image
try:
image = Image.open(io.BytesIO(result_bytes))
except Exception as img_error:
print(f"Failed to open image: {img_error}")
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - HF Inference Client (JS)",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face Inference Client via JavaScript.
<br>
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
<br>
This model specializes in understanding context and making precise edits to your images.
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
<br>
<b>Requirements:</b> Node.js and npm must be installed. Uses HF_TOKEN environment variable.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Upload an image and type your editing instructions...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()