Spaces:
Paused
Paused
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import base64 | |
import requests | |
import io | |
from PIL import Image, ImageOps | |
import pillow_heif # For HEIF/AVIF support | |
# --- Constants --- | |
MAX_SEED = np.iinfo(np.int32).max | |
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue" | |
def get_headers(): | |
"""Get headers for API requests""" | |
hf_token = os.getenv("HF_TOKEN") | |
if not hf_token: | |
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.") | |
return { | |
"Authorization": f"Bearer {hf_token}", | |
"X-HF-Bill-To": "huggingface" | |
} | |
def query_api(payload): | |
"""Send request to the API and return response""" | |
headers = get_headers() | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code != 200: | |
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}") | |
# Debug: Check response content type and first few bytes | |
print(f"Response status: {response.status_code}") | |
print(f"Response headers: {dict(response.headers)}") | |
print(f"Response content type: {response.headers.get('content-type', 'unknown')}") | |
print(f"Response content length: {len(response.content)}") | |
print(f"First 200 chars of response: {response.content[:200]}") | |
# Check if response is JSON (error case) or binary (image case) | |
content_type = response.headers.get('content-type', '').lower() | |
if 'application/json' in content_type: | |
# Response is JSON, might contain base64 image or error | |
try: | |
json_response = response.json() | |
print(f"JSON response: {json_response}") | |
# Check if there's a base64 image in the response | |
if 'image' in json_response: | |
# Decode base64 image | |
image_data = base64.b64decode(json_response['image']) | |
return image_data | |
elif 'images' in json_response and len(json_response['images']) > 0: | |
# Multiple images, take the first one | |
image_data = base64.b64decode(json_response['images'][0]) | |
return image_data | |
else: | |
raise gr.Error(f"Unexpected JSON response format: {json_response}") | |
except Exception as e: | |
raise gr.Error(f"Failed to parse JSON response: {str(e)}") | |
elif 'image/' in content_type: | |
# Response is direct image bytes | |
return response.content | |
else: | |
# Try to decode as base64 first, then as direct bytes | |
try: | |
# Maybe the entire response is base64 encoded | |
image_data = base64.b64decode(response.content) | |
return image_data | |
except: | |
# Return as-is and let PIL try to handle it | |
return response.content | |
# --- Core Inference Function for ChatInterface --- | |
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()): | |
""" | |
Performs image generation or editing based on user input from the chat interface. | |
""" | |
# Register HEIF opener with PIL for AVIF/HEIF support | |
pillow_heif.register_heif_opener() | |
prompt = message["text"] | |
files = message["files"] | |
if not prompt and not files: | |
raise gr.Error("Please provide a prompt and/or upload an image.") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Prepare the payload | |
payload = { | |
"parameters": { | |
"prompt": prompt, | |
"seed": seed, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": steps | |
} | |
} | |
if files: | |
print(f"Received image: {files[0]}") | |
try: | |
# Try to open and convert the image | |
input_image = Image.open(files[0]) | |
# Convert to RGB if needed (handles RGBA, P, etc.) | |
if input_image.mode != "RGB": | |
input_image = input_image.convert("RGB") | |
# Auto-orient the image based on EXIF data | |
input_image = ImageOps.exif_transpose(input_image) | |
# Convert PIL image to base64 for the API | |
img_byte_arr = io.BytesIO() | |
input_image.save(img_byte_arr, format='PNG') | |
img_byte_arr.seek(0) | |
image_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8') | |
# Add image to payload for image-to-image | |
payload["inputs"] = image_base64 | |
except Exception as e: | |
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).") | |
progress(0.1, desc="Processing image...") | |
else: | |
print(f"Received prompt for text-to-image: {prompt}") | |
# For text-to-image, we don't need the inputs field | |
progress(0.1, desc="Generating image...") | |
try: | |
# Make API request | |
image_bytes = query_api(payload) | |
# Try to convert response bytes to PIL Image with better error handling | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
except Exception as img_error: | |
print(f"Failed to open image directly: {img_error}") | |
# Maybe it's a different format, try to save and examine | |
with open('/tmp/debug_response.bin', 'wb') as f: | |
f.write(image_bytes) | |
print(f"Saved response to /tmp/debug_response.bin for debugging") | |
# Try to decode as base64 if direct opening failed | |
try: | |
decoded_bytes = base64.b64decode(image_bytes) | |
image = Image.open(io.BytesIO(decoded_bytes)) | |
except: | |
raise gr.Error(f"Could not process API response as image. Response type: {type(image_bytes)}, Length: {len(image_bytes) if isinstance(image_bytes, (bytes, str)) else 'unknown'}") | |
progress(1.0, desc="Complete!") | |
return gr.Image(value=image) | |
except gr.Error: | |
# Re-raise gradio errors as-is | |
raise | |
except Exception as e: | |
raise gr.Error(f"Failed to generate image: {str(e)}") | |
# --- UI Definition using gr.ChatInterface --- | |
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False) | |
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5) | |
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1) | |
demo = gr.ChatInterface( | |
fn=chat_fn, | |
title="FLUX.1 Kontext [dev] - Direct API", | |
description="""<p style='text-align: center;'> | |
A simple chat UI for the <b>FLUX.1 Kontext</b> model using direct API calls with requests. | |
<br> | |
To edit an image, upload it and type your instructions (e.g., "Add a hat"). | |
<br> | |
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse"). | |
<br> | |
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>. | |
</p>""", | |
multimodal=True, | |
textbox=gr.MultimodalTextbox( | |
file_types=["image"], | |
placeholder="Type a prompt and/or upload an image...", | |
render=False | |
), | |
additional_inputs=[ | |
seed_slider, | |
randomize_checkbox, | |
guidance_slider, | |
steps_slider | |
], | |
theme="soft" | |
) | |
if __name__ == "__main__": | |
demo.launch() |