File size: 5,101 Bytes
229755d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torchmetrics.functional import accuracy
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import albumentations as A
from albumentations.pytorch import ToTensorV2


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class LitResNet(pl.LightningModule):
    def __init__(self, block, num_blocks, num_classes=10,batch_size=128):
        super(LitResNet, self).__init__()
        self.batch_size = batch_size
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

        
    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
    
        
    
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        # Calculate loss
        loss = F.cross_entropy(y_hat, y)
        #Calculate accuracy
        acc = accuracy(y_hat, y)
        self.log_dict(
            {"train_loss": loss, "train_acc": acc},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )
        return loss
    
    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        acc = accuracy(y_hat, y)
        self.log_dict(
            {"val_loss": loss, "val_acc": acc},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )
        return loss

    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)

        argmax_pred = y_hat.argmax(dim=1).cpu()
        loss = F.cross_entropy(y_hat, y)
        acc = accuracy(y_hat, y)
        self.log_dict(
            {"test_loss": loss, "test_acc": acc},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )

        # Update the confusion matrix
        self.confusion_matrix.update(y_hat, y)

        # Store the predictions, labels and incorrect predictions
        x, y, y_hat, argmax_pred = (
            x.cpu(),
            y.cpu(),
            y_hat.cpu(),
            argmax_pred.cpu(),
        )
        self.pred_store["test_preds"] = torch.cat(
            (self.pred_store["test_preds"], argmax_pred), dim=0
        )
        self.pred_store["test_labels"] = torch.cat(
            (self.pred_store["test_labels"], y), dim=0
        )
        for d, t, p, o in zip(x, y, argmax_pred, y_hat):
            if p.eq(t.view_as(p)).item() == False:
                self.pred_store["test_incorrect"].append(
                    (d.cpu(), t, p, o[p.item()].cpu())
                )

        return loss


def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=0.02)

def LitResNet18():
    return LitResNet(BasicBlock, [2, 2, 2, 2])

def LitResNet34(): 
    return LitResNet(BasicBlock, [3, 4, 6, 3])