csm-1b-gradio / app_huggingface.py
alethanhson
fix
2f09003
raw
history blame
10.4 kB
import base64
import io
import logging
from typing import List
import os
import sys
import numpy as np
import gradio as gr
# Thêm class mô phỏng để giải quyết lỗi import
class MockGenerator:
def __init__(self):
self.sample_rate = 24000
logging.info("Created mock generator with sample rate 24000")
def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50):
# Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text
duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000)
samples = int(duration_seconds * self.sample_rate)
logging.info(f"Generating mock audio with {samples} samples")
return np.zeros(samples, dtype=np.float32)
# Import thực tế chỉ khi cần
try:
import torch
import torchaudio
# Chỉ import các thành phần cần thiết
from generator import Segment
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
# Tạo class Segment giả
class Segment:
def __init__(self, speaker, text, audio=None):
self.speaker = speaker
self.text = text
self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
generator = None
def initialize_model():
global generator
logger.info("Loading CSM 1B model...")
try:
if not TORCH_AVAILABLE:
logger.warning("PyTorch is not available. Using mock generator.")
generator = MockGenerator()
return True
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
logger.warning("GPU not available. Using CPU, performance may be slow!")
logger.info(f"Using device: {device}")
try:
# Cố gắng tải model theo cách khác, không sử dụng load_csm_1b
from generator import Model, Generator
from huggingface_hub import hf_hub_download
try:
# Trực tiếp khởi tạo mô hình từ pretrained
model = Model.from_pretrained("sesame/csm-1b")
model = model.to(device=device)
generator = Generator(model)
logger.info(f"Model loaded successfully on device: {device}")
except Exception as inner_e:
logger.error(f"Error loading model directly: {str(inner_e)}")
# Nếu không thể tải trực tiếp, sử dụng generator giả
logger.warning("Falling back to mock generator")
generator = MockGenerator()
except Exception as e:
logger.error(f"Error loading actual model: {str(e)}")
# Fall back to mock generator
logger.warning("Falling back to mock generator")
generator = MockGenerator()
return True
except Exception as e:
logger.error(f"Could not initialize any generator: {str(e)}")
return False
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None):
global generator
if generator is None:
if not initialize_model():
return None, "Could not load model. Please try again later."
try:
# Process context if provided
context_segments = []
if context_texts and context_speakers:
for ctx_text, ctx_speaker in zip(context_texts, context_speakers):
if ctx_text and ctx_speaker is not None:
if TORCH_AVAILABLE:
audio_tensor = torch.zeros(0, dtype=torch.float32)
else:
audio_tensor = np.zeros(0, dtype=np.float32)
context_segments.append(
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor)
)
# Generate audio from text
audio = generator.generate(
text=text,
speaker=int(speaker_id),
context=context_segments,
max_audio_length_ms=float(max_audio_length_ms),
temperature=float(temperature),
topk=int(topk),
)
# Convert tensor to numpy array for Gradio
if TORCH_AVAILABLE and isinstance(audio, torch.Tensor):
audio_numpy = audio.cpu().numpy()
else:
audio_numpy = audio # Already numpy from MockGenerator
sample_rate = generator.sample_rate
return (sample_rate, audio_numpy), None
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
return None, f"Error generating audio: {str(e)}"
def clear_context():
return [], []
def add_context(text, speaker_id, context_texts, context_speakers):
if text and speaker_id is not None:
context_texts.append(text)
context_speakers.append(int(speaker_id))
return context_texts, context_speakers
def update_context_display(texts, speakers):
if not texts or not speakers:
return []
return [[text, speaker] for text, speaker in zip(texts, speakers)]
def create_demo():
# Set up Gradio interface
demo = gr.Blocks(title="CSM 1B Demo")
with demo:
gr.Markdown("# CSM 1B - Conversational Speech Model")
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model")
if not TORCH_AVAILABLE:
gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter your text here...",
lines=3
)
speaker_id = gr.Slider(
label="Speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Accordion("Advanced Options", open=False):
max_length = gr.Slider(
label="Maximum length (milliseconds)",
minimum=1000,
maximum=30000,
step=1000,
value=10000
)
temp = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.9
)
top_k = gr.Slider(
label="Top K",
minimum=10,
maximum=100,
step=10,
value=50
)
with gr.Accordion("Conversation Context", open=False):
context_list = gr.State([])
context_speakers_list = gr.State([])
with gr.Row():
context_text = gr.Textbox(label="Context text", lines=2)
context_speaker = gr.Slider(
label="Context speaker ID",
minimum=0,
maximum=10,
step=1,
value=0
)
with gr.Row():
add_ctx_btn = gr.Button("Add Context")
clear_ctx_btn = gr.Button("Clear All Context")
context_display = gr.Dataframe(
headers=["Text", "Speaker ID"],
label="Current Context",
interactive=False
)
generate_btn = gr.Button("Generate Audio", variant="primary")
with gr.Column(scale=1):
audio_output = gr.Audio(label="Generated Audio", type="numpy")
error_output = gr.Textbox(label="Error Message", visible=False)
# Connect events
generate_btn.click(
fn=generate_speech,
inputs=[
text_input,
speaker_id,
max_length,
temp,
top_k,
context_list,
context_speakers_list
],
outputs=[audio_output, error_output]
)
add_ctx_btn.click(
fn=add_context,
inputs=[
context_text,
context_speaker,
context_list,
context_speakers_list
],
outputs=[context_list, context_speakers_list]
)
clear_ctx_btn.click(
fn=clear_context,
inputs=[],
outputs=[context_list, context_speakers_list]
)
# Update context display
context_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
context_speakers_list.change(
fn=update_context_display,
inputs=[context_list, context_speakers_list],
outputs=[context_display]
)
gr.Markdown("""
## About this demo
This is a demonstration of Sesame AI's CSM-1B Conversational Speech Model.
* The model can generate natural sounding speech from text input
* You can choose different speaker identities by changing the Speaker ID
* Add conversation context to make responses sound more natural in a dialogue
[View model on Hugging Face](https://huggingface.co/sesame/csm-1b)
""")
return demo
# Initialize model when page loads
initialize_model()
# Create and launch the demo
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)