Spaces:
Paused
Paused
""" | |
A model worker executes the model. | |
""" | |
import argparse | |
import asyncio | |
import dataclasses | |
import logging | |
import json | |
import time | |
from typing import List, Union | |
import threading | |
import uuid | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.responses import StreamingResponse | |
import requests | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import uvicorn | |
from functools import partial | |
from llava.constants import WORKER_HEART_BEAT_INTERVAL | |
from llava.utils import (build_logger, server_error_msg, | |
pretty_print_semaphore) | |
from llava.model import * | |
GB = 1 << 30 | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
global_counter = 0 | |
model_semaphore = None | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
def load_model(model_path, model_name, num_gpus): | |
if num_gpus == 1: | |
kwargs = {} | |
else: | |
kwargs = { | |
"device_map": "auto", | |
"max_memory": {i: "13GiB" for i in range(num_gpus)}, | |
} | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if 'llava' in model_name.lower(): | |
if 'mpt' in model_name.lower(): | |
model = LlavaMPTForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs) | |
else: | |
model = LlavaLlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs) | |
elif 'mpt' in model_name.lower(): | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs) | |
image_processor = None | |
if 'llava' in model_name.lower(): | |
from transformers import CLIPImageProcessor, CLIPVisionModel | |
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16) | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
vision_tower = model.get_model().vision_tower[0] | |
if vision_tower.device.type == 'meta': | |
vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda() | |
model.get_model().vision_tower[0] = vision_tower | |
else: | |
vision_tower.to(device='cuda', dtype=torch.float16) | |
vision_config = vision_tower.config | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
vision_config.use_im_start_end = mm_use_im_start_end | |
if mm_use_im_start_end: | |
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
if num_gpus == 1: | |
model.cuda() | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |
class ModelWorker: | |
def __init__(self, controller_addr, worker_addr, | |
worker_id, no_register, | |
model_path, model_name, | |
keep_aspect_ratio, | |
num_gpus): | |
self.controller_addr = controller_addr | |
self.worker_addr = worker_addr | |
self.worker_id = worker_id | |
if model_path.endswith("/"): | |
model_path = model_path[:-1] | |
if model_name is None: | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith('checkpoint-'): | |
self.model_name = model_paths[-2] + "_" + model_paths[-1] | |
else: | |
self.model_name = model_paths[-1] | |
else: | |
self.model_name = model_name | |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
self.keep_aspect_ratio = keep_aspect_ratio | |
self.tokenizer, self.model, self.image_processor, self.context_len = load_model( | |
model_path, self.model_name, num_gpus) | |
self.is_multimodal = 'llava' in model_path.lower() | |
if not no_register: | |
self.register_to_controller() | |
self.heart_beat_thread = threading.Thread( | |
target=heart_beat_worker, args=(self,)) | |
self.heart_beat_thread.start() | |
def register_to_controller(self): | |
logger.info("Register to controller") | |
url = self.controller_addr + "/register_worker" | |
data = { | |
"worker_name": self.worker_addr, | |
"check_heart_beat": True, | |
"worker_status": self.get_status() | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
def send_heart_beat(self): | |
logger.info(f"Send heart beat. Models: {[self.model_name]}. " | |
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
f"global_counter: {global_counter}") | |
url = self.controller_addr + "/receive_heart_beat" | |
while True: | |
try: | |
ret = requests.post(url, json={ | |
"worker_name": self.worker_addr, | |
"queue_length": self.get_queue_length()}, timeout=5) | |
exist = ret.json()["exist"] | |
break | |
except requests.exceptions.RequestException as e: | |
logger.error(f"heart beat error: {e}") | |
time.sleep(5) | |
if not exist: | |
self.register_to_controller() | |
def get_queue_length(self): | |
if model_semaphore is None: | |
return 0 | |
else: | |
return args.limit_model_concurrency - model_semaphore._value + (len( | |
model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
def get_status(self): | |
return { | |
"model_names": [self.model_name], | |
"speed": 1, | |
"queue_length": self.get_queue_length(), | |
} | |
def generate_stream(self, params): | |
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor | |
prompt = params["prompt"] | |
ori_prompt = prompt | |
images = params.get("images", None) | |
if images is not None and len(images) > 0 and self.is_multimodal: | |
from PIL import Image | |
from io import BytesIO | |
import base64 | |
assert type(images) is list | |
if len(images) > 0: | |
# assert len(images) == 1, "Only support one image for now" | |
images = [Image.open(BytesIO(base64.b64decode(image))) for image in images] | |
assert len(images) == prompt.count(DEFAULT_IMAGE_TOKEN), "Number of images does not match number of <image> tokens in prompt" | |
if self.keep_aspect_ratio: | |
new_images = [] | |
for image_idx, image in enumerate(images): | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 448, 224 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len)) | |
image = image_processor.preprocess(image, return_tensors='pt', do_center_crop=False, size={"shortest_edge": shortest_edge})['pixel_values'][0] | |
new_images.append(image.to(self.model.device, dtype=torch.float16)) | |
# replace the image token with the image patch token in the prompt (each occurrence) | |
cur_token_len = (image.shape[1]//14) * (image.shape[2]//14) | |
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * cur_token_len | |
if getattr(self.model.config, 'mm_use_im_start_end', False): | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token, 1) | |
images = new_images | |
else: | |
images = image_processor(images, return_tensors='pt')['pixel_values'] | |
images = images.to(self.model.device, dtype=torch.float16) | |
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * 256 # HACK: 256 is the max image token length hacked | |
if getattr(self.model.config, 'mm_use_im_start_end', False): | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
else: | |
images = None | |
image_args = {"images": images} | |
else: | |
images = None | |
image_args = {} | |
l_prompt = len(prompt) | |
temperature = float(params.get("temperature", 1.0)) | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
stop_str = params.get("stop", None) | |
stop_idx = None | |
if stop_str is not None: | |
stop_idx = tokenizer(stop_str).input_ids | |
if len(stop_idx) == 1: | |
stop_idx = stop_idx[0] | |
else: | |
stop_idx = None | |
input_ids = tokenizer(prompt).input_ids | |
output_ids = list(input_ids) | |
pred_ids = [] | |
max_src_len = self.context_len - max_new_tokens - 8 | |
input_ids = input_ids[-max_src_len:] | |
past_key_values = None | |
for i in range(max_new_tokens): | |
if i == 0: | |
out = model( | |
torch.as_tensor([input_ids]).cuda(), | |
use_cache=True, | |
**image_args) | |
logits = out.logits | |
past_key_values = out.past_key_values | |
else: | |
attention_mask = torch.ones( | |
1, past_key_values[0][0].shape[-2] + 1, device="cuda") | |
out = model(input_ids=torch.as_tensor([[token]], device="cuda"), | |
use_cache=True, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values) | |
logits = out.logits | |
past_key_values = out.past_key_values | |
last_token_logits = logits[0][-1] | |
if temperature < 1e-4: | |
token = int(torch.argmax(last_token_logits)) | |
else: | |
probs = torch.softmax(last_token_logits / temperature, dim=-1) | |
token = int(torch.multinomial(probs, num_samples=1)) | |
output_ids.append(token) | |
pred_ids.append(token) | |
if stop_idx is not None and token == stop_idx: | |
stopped = True | |
elif token == tokenizer.eos_token_id: | |
stopped = True | |
else: | |
stopped = False | |
if i % args.stream_interval == 0 or i == max_new_tokens - 1 or stopped: | |
cur_out = tokenizer.decode(pred_ids, skip_special_tokens=True) | |
pos = cur_out.rfind(stop_str) | |
if pos != -1: | |
cur_out = cur_out[:pos] | |
stopped = True | |
output = ori_prompt + cur_out | |
ret = { | |
"text": output, | |
"error_code": 0, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
if stopped: | |
break | |
if past_key_values is not None: | |
del past_key_values | |
def generate_stream_gate(self, params): | |
try: | |
for x in self.generate_stream(params): | |
yield x | |
except ValueError as e: | |
print("Caught ValueError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except torch.cuda.CudaError as e: | |
print("Caught torch.cuda.CudaError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
app = FastAPI() | |
def release_model_semaphore(fn=None): | |
model_semaphore.release() | |
if fn is not None: | |
fn() | |
async def generate_stream(request: Request): | |
global model_semaphore, global_counter | |
global_counter += 1 | |
params = await request.json() | |
if model_semaphore is None: | |
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
await model_semaphore.acquire() | |
worker.send_heart_beat() | |
generator = worker.generate_stream_gate(params) | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
return StreamingResponse(generator, background=background_tasks) | |
async def get_status(request: Request): | |
return worker.get_status() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="localhost") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-address", type=str, | |
default="http://localhost:21002") | |
parser.add_argument("--controller-address", type=str, | |
default="http://localhost:21001") | |
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model-name", type=str) | |
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | |
parser.add_argument("--keep-aspect-ratio", action="store_true") | |
parser.add_argument("--num-gpus", type=int, default=1) | |
parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
parser.add_argument("--stream-interval", type=int, default=2) | |
parser.add_argument("--no-register", action="store_true") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
if args.multi_modal: | |
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | |
worker = ModelWorker(args.controller_address, | |
args.worker_address, | |
worker_id, | |
args.no_register, | |
args.model_path, | |
args.model_name, | |
args.keep_aspect_ratio, | |
args.num_gpus) | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |