Spaces:
Sleeping
Sleeping
import gradio as gr | |
from diffusers import DDPMPipeline | |
import torch | |
model = 'alexktrs/CumulusCloudsGenerator' | |
if torch.cuda.is_available(): | |
device='cuda' | |
else: | |
device='cpu' | |
generator = DDPMPipeline.from_pretrained(model) | |
generator.to(device) | |
def generate(num_images, num_inference_steps): | |
images=[] | |
print(num_images) | |
if num_images==None: | |
num_images=1 | |
num_images=int(num_images) | |
for i in range(num_images): | |
image = generator(num_inference_steps=num_inference_steps).images[0] | |
images.append(image) | |
return images | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# Generate Cumulus Clouds | |
""") | |
gallery=gr.Gallery(type="pil") | |
with gr.Row(): | |
slider=gr.Slider(label='Inference Steps', minimum=1, maximum=100, step=1, value=20) | |
n=gr.Number(label='Number of Generated Images', minimum=1, maximum=4, value=2) | |
btn = gr.Button("Generate Clouds") | |
btn.click(fn=generate, inputs=[n, slider], outputs=gallery) | |
demo.launch() |