File size: 14,330 Bytes
f17f7b0 29afb8d 36a9ee5 2568013 621c6e5 2568013 2375b22 2568013 29afb8d 2568013 d0b0cf2 898dd6d 2375b22 2568013 2375b22 2568013 61b26d2 2568013 61b26d2 2568013 2375b22 2568013 d0b0cf2 2568013 2375b22 2568013 65632a5 2375b22 2568013 2375b22 852e884 2375b22 2568013 a19ea4b 852e884 2375b22 188aad8 852e884 2568013 2375b22 2568013 d0b0cf2 2568013 d0b0cf2 2568013 d0b0cf2 2568013 2375b22 d0b0cf2 2568013 d0b0cf2 2568013 d0b0cf2 2568013 d0a30b3 2568013 d0b0cf2 2568013 d0a30b3 13b49d9 c6449a4 13b49d9 d0a30b3 a97dfad 8cb18fc 2375b22 13b49d9 d0a30b3 a97dfad d0a30b3 d9c86b4 d0a30b3 c6449a4 d0a30b3 f63c9d3 852e884 f63c9d3 c6449a4 2568013 852e884 d49f3be d0b0cf2 2568013 af08e7f 2568013 2375b22 2568013 2375b22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import spaces
import torch
print(f'torch version:{torch.__version__}')
import functools
import gc
import os
import subprocess
import shutil
import sys
import tempfile
import time
from datetime import datetime
from pathlib import Path
import uuid
import cv2
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.misc.image_io import save_interpolated_video
from src.model.model.anysplat import AnySplat
from src.model.ply_export import export_ply
from src.utils.image import process_image
os.environ["ANYSPLAT_PROCESSED"] = f"{os.getcwd()}/proprocess_results"
from plyfile import PlyData
import numpy as np
import argparse
from io import BytesIO
def process_ply_to_splat(ply_file_path):
plydata = PlyData.read(ply_file_path)
vert = plydata["vertex"]
sorted_indices = np.argsort(
-np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
/ (1 + np.exp(-vert["opacity"]))
)
buffer = BytesIO()
for idx in sorted_indices:
v = plydata["vertex"][idx]
position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
scales = np.exp(
np.array(
[v["scale_0"], v["scale_1"], v["scale_2"]],
dtype=np.float32,
)
)
rot = np.array(
[v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
dtype=np.float32,
)
SH_C0 = 0.28209479177387814
color = np.array(
[
0.5 + SH_C0 * v["f_dc_0"],
0.5 + SH_C0 * v["f_dc_1"],
0.5 + SH_C0 * v["f_dc_2"],
1 / (1 + np.exp(-v["opacity"])),
]
)
buffer.write(position.tobytes())
buffer.write(scales.tobytes())
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
buffer.write(
((rot / np.linalg.norm(rot)) * 128 + 128)
.clip(0, 255)
.astype(np.uint8)
.tobytes()
)
return buffer.getvalue()
def save_splat_file(splat_data, output_path):
with open(output_path, "wb") as f:
f.write(splat_data)
def get_reconstructed_scene(outdir, model, device):
image_files = sorted(
[
os.path.join(outdir, "images", f)
for f in os.listdir(os.path.join(outdir, "images"))
]
)
images = [process_image(img_path) for img_path in image_files]
images = torch.stack(images, dim=0).unsqueeze(0).to(device) # [1, K, 3, 448, 448]
b, v, c, h, w = images.shape
assert c == 3, "Images must have 3 channels"
gaussians, pred_context_pose = model.inference((images + 1) * 0.5)
pred_all_extrinsic = pred_context_pose["extrinsic"]
pred_all_intrinsic = pred_context_pose["intrinsic"]
video, depth_colored = save_interpolated_video(
pred_all_extrinsic,
pred_all_intrinsic,
b,
h,
w,
gaussians,
outdir,
model.decoder,
)
plyfile = os.path.join(outdir, "gaussians.ply")
export_ply(
gaussians.means[0],
gaussians.scales[0],
gaussians.rotations[0],
gaussians.harmonics[0],
gaussians.opacities[0],
Path(plyfile),
save_sh_dc_only=True,
)
# Clean up
torch.cuda.empty_cache()
return plyfile, video, depth_colored
# 2) Handle uploaded video/images --> produce target_dir + images
def extract_frames(input_video, session_id):
"""
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
images or extracted frames from video into it. Return (target_dir, image_paths).
"""
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
target_dir = base_dir
target_dir_images = os.path.join(target_dir, "images")
# Clean up if somehow that folder already exists
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
os.makedirs(target_dir_images)
image_paths = []
if input_video is not None:
if isinstance(input_video, dict) and "name" in input_video:
video_path = input_video["name"]
else:
video_path = input_video
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * 1) # 1 frame/sec
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
if count % frame_interval == 0:
image_path = os.path.join(
target_dir_images, f"{video_frame_num:06}.png"
)
cv2.imwrite(image_path, frame)
image_paths.append(image_path)
video_frame_num += 1
# Sort final images for gallery
image_paths = sorted(image_paths)
end_time = time.time()
print(
f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
)
return target_dir, image_paths
def update_gallery_on_upload(input_video, session_id):
"""
Whenever user uploads or changes files, immediately handle them
and show in the gallery. Return (target_dir, image_paths).
If nothing is uploaded, returns "None" and empty list.
"""
if not input_video and not input_images:
return None, None, None
target_dir, image_paths = extract_frames(input_video, session_id)
return None, target_dir, image_paths
@spaces.GPU()
def generate_splats_from_video(video_path, session_id=None):
if session_id is None:
session_id = uuid.uuid4().hex
images_folder, image_paths = extract_frames(video_path, session_id)
plyfile, rgb_vid, depth_vid = generate_splats_from_images(images_folder, session_id)
return plyfile, rgb_vid, depth_vid, image_paths
@spaces.GPU()
def generate_splats_from_images(images_folder, session_id=None):
if session_id is None:
session_id = uuid.uuid4().hex
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
all_files = (
sorted(os.listdir(images_folder))
if os.path.isdir(images_folder)
else []
)
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
print("Running run_model...")
with torch.no_grad():
plyfile, video, depth_colored = get_reconstructed_scene(base_dir, model, device)
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
return plyfile, video, depth_colored
def cleanup(request: gr.Request):
"""
Clean up session-specific directories and temporary files when the user session ends.
This function is triggered when the Gradio demo is unloaded (e.g., when the user
closes the browser tab or navigates away). It removes all temporary files and
directories created during the user's session to free up storage space.
Args:
request (gr.Request): Gradio request object containing session information
"""
sid = request.session_hash
if sid:
d1 = os.path.join(os.environ["ANYSPLAT_PROCESSED"], sid)
shutil.rmtree(d1, ignore_errors=True)
def start_session(request: gr.Request):
"""
Initialize a new user session and return the session identifier.
This function is triggered when the Gradio demo loads and creates a unique
session hash that will be used to organize outputs and temporary files
for this specific user session.
Args:
request (gr.Request): Gradio request object containing session information
Returns:
str: Unique session hash identifier
"""
return request.session_hash
if __name__ == "__main__":
share = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model = AnySplat.from_pretrained(
"lhjiang/anysplat"
)
model = model.to(device)
model.eval()
for param in model.parameters():
param.requires_grad = False
theme = gr.themes.Ocean()
theme.set(
checkbox_label_background_fill_selected="*button_primary_background_fill",
checkbox_label_text_color_selected="*button_primary_text_color",
)
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css, title="AnySplat Demo", theme=theme) as demo:
session_state = gr.State()
demo.load(start_session, outputs=[session_state])
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
is_example = gr.Textbox(label="is_example", visible=False, value="None")
num_images = gr.Textbox(label="num_images", visible=False, value="None")
dataset_name = gr.Textbox(label="dataset_name", visible=False, value="None")
scene_name = gr.Textbox(label="scene_name", visible=False, value="None")
image_type = gr.Textbox(label="image_type", visible=False, value="None")
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>AnySplat</strong> – Feed-forward 3D Gaussian Splatting from Unconstrained Views
</p>
<a href="https://github.com/OpenRobotLab/AnySplat" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub Repo">
</a>
</div>
"""
)
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Upload Video", sources=["upload"], interactive=True, height=512)
submit_btn = gr.Button(
"Reconstruct", scale=1, variant="primary"
)
image_gallery = gr.Gallery(
label="Preview",
columns=4,
height="300px",
show_download_button=True,
object_fit="contain",
preview=True,
)
with gr.Column():
with gr.Column():
reconstruction_output = gr.Model3D(
label="3D Reconstructed Gaussian Splat",
height=512,
zoom_speed=0.5,
pan_speed=0.5,
camera_position=[20, 20, 20],
)
with gr.Row():
rgb_video = gr.Video(
label="RGB Video", interactive=False, autoplay=True
)
depth_video = gr.Video(
label="Depth Video",
interactive=False,
autoplay=True,
)
with gr.Row():
examples = [
["examples/video/re10k_1eca36ec55b88fe4.mp4"],
["examples/video/bungeenerf_colosseum.mp4"],
["examples/video/fox.mp4"],
["examples/video/matrixcity_street.mp4"],
["examples/video/vrnerf_apartment.mp4"],
# [None, "examples/video/vrnerf_kitchen.mp4", "vrnerf", "kitchen", "17", "Real", "True",],
# [None, "examples/video/vrnerf_riverview.mp4", "vrnerf", "riverview", "12", "Real", "True",],
# [None, "examples/video/vrnerf_workshop.mp4", "vrnerf", "workshop", "32", "Real", "True",],
# [None, "examples/video/fillerbuster_ramen.mp4", "fillerbuster", "ramen", "32", "Real", "True",],
# [None, "examples/video/meganerf_rubble.mp4", "meganerf", "rubble", "10", "Real", "True",],
# [None, "examples/video/llff_horns.mp4", "llff", "horns", "12", "Real", "True",],
# [None, "examples/video/llff_fortress.mp4", "llff", "fortress", "7", "Real", "True",],
# [None, "examples/video/dtu_scan_106.mp4", "dtu", "scan_106", "20", "Real", "True",],
# [None, "examples/video/horizongs_hillside_summer.mp4", "horizongs", "hillside_summer", "55", "Synthetic", "True",],
# [None, "examples/video/kitti360.mp4", "kitti360", "kitti360", "64", "Real", "True",],
]
gr.Examples(
examples=examples,
inputs=[
input_video
],
outputs=[
reconstruction_output,
rgb_video,
depth_video,
image_gallery
],
fn=generate_splats_from_video,
cache_examples=True,
)
submit_btn.click(
fn=generate_splats_from_images,
inputs=[target_dir_output, session_state],
outputs=[reconstruction_output, rgb_video, depth_video])
input_video.upload(
fn=update_gallery_on_upload,
inputs=[input_video, session_state],
outputs=[reconstruction_output, target_dir_output, image_gallery],
)
demo.unload(cleanup)
demo.queue()
demo.launch(show_error=True, share=True)
|