|
|
|
from pathlib import Path |
|
import torch |
|
import os |
|
import sys |
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
from src.misc.image_io import save_interpolated_video |
|
from src.model.ply_export import export_ply |
|
from src.model.model.anysplat import AnySplat |
|
from src.utils.image import process_image |
|
|
|
def main(): |
|
|
|
model = AnySplat.from_pretrained("lhjiang/anysplat") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = model.to(device) |
|
model.eval() |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
image_folder = "examples/vrnerf/riverview" |
|
images = sorted([os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]) |
|
images = [process_image(img_path) for img_path in images] |
|
images = torch.stack(images, dim=0).unsqueeze(0).to(device) |
|
b, v, _, h, w = images.shape |
|
|
|
|
|
gaussians, pred_context_pose = model.inference((images+1)*0.5) |
|
|
|
|
|
pred_all_extrinsic = pred_context_pose['extrinsic'] |
|
pred_all_intrinsic = pred_context_pose['intrinsic'] |
|
save_interpolated_video(pred_all_extrinsic, pred_all_intrinsic, b, h, w, gaussians, image_folder, model.decoder) |
|
export_ply(gaussians.means[0], gaussians.scales[0], gaussians.rotations[0], gaussians.harmonics[0], gaussians.opacities[0], Path(image_folder) / "gaussians.ply") |
|
|
|
if __name__ == "__main__": |
|
main() |