|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from typing import Callable, Iterable, Optional |
|
from torch.utils.data import DataLoader, Dataset, DistributedSampler, IterableDataset, Sampler, BatchSampler |
|
import random |
|
|
|
def custom_collate_fn(batch): |
|
""" |
|
Custom collate function to handle variable batch sizes |
|
|
|
Args: |
|
batch: A list where each element could be either: |
|
- A single tuple (idx, num_images, ...) |
|
- A list of tuples [(idx1, num_images1, ...), (idx2, num_images2, ...)] |
|
""" |
|
|
|
breakpoint() |
|
if isinstance(batch[0], list): |
|
|
|
flattened = [] |
|
for item in batch: |
|
flattened.extend(item) |
|
batch = flattened |
|
|
|
|
|
return torch.utils.data.default_collate(batch) |
|
|
|
class BatchedRandomSampler: |
|
"""Random sampling under a constraint: each sample in the batch has the same feature, |
|
which is chosen randomly from a known pool of 'features' for each batch. |
|
|
|
For instance, the 'feature' could be the image aspect-ratio. |
|
|
|
The index returned is a tuple (sample_idx, feat_idx). |
|
This sampler ensures that each series of `batch_size` indices has the same `feat_idx`. |
|
""" |
|
|
|
def __init__( |
|
self, dataset, batch_size, num_context_views, min_patch_num=20, max_patch_num=32, world_size=1, rank=0, drop_last=True |
|
): |
|
self.batch_size = batch_size |
|
self.num_context_views = num_context_views |
|
|
|
self.len_dataset = N = len(dataset) |
|
self.total_size = round_by(N, batch_size * world_size) if drop_last else N |
|
self.min_patch_num = min_patch_num |
|
self.max_patch_num = max_patch_num |
|
assert ( |
|
world_size == 1 or drop_last |
|
), "must drop the last batch in distributed mode" |
|
|
|
|
|
self.world_size = world_size |
|
self.rank = rank |
|
self.epoch = None |
|
|
|
def __len__(self): |
|
|
|
|
|
return self.total_size // self.world_size |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|
|
def __iter__(self): |
|
|
|
if self.epoch is None: |
|
assert ( |
|
self.world_size == 1 and self.rank == 0 |
|
), "use set_epoch() if distributed mode is used" |
|
seed = int(torch.empty((), dtype=torch.int64).random_().item()) |
|
else: |
|
seed = self.epoch + 777 |
|
rng = np.random.default_rng(seed=seed) |
|
|
|
|
|
sample_idxs = np.arange(self.total_size) |
|
rng.shuffle(sample_idxs) |
|
|
|
|
|
n_batches = (self.total_size + self.batch_size - 1) // self.batch_size |
|
num_imgs = rng.integers(low=2, high=self.num_context_views, size=n_batches) |
|
|
|
num_imgs = np.broadcast_to(num_imgs[:, None], (n_batches, self.batch_size)) |
|
num_imgs = num_imgs.ravel()[: self.total_size] |
|
|
|
|
|
idxs = np.c_[sample_idxs, num_imgs] |
|
|
|
|
|
|
|
size_per_proc = self.batch_size * ( |
|
(self.total_size + self.world_size * self.batch_size - 1) |
|
// (self.world_size * self.batch_size) |
|
) |
|
idxs = idxs[self.rank * size_per_proc : (self.rank + 1) * size_per_proc] |
|
|
|
yield from (tuple(idx) for idx in idxs) |
|
|
|
class DynamicBatchSampler(Sampler): |
|
""" |
|
A custom batch sampler that dynamically adjusts batch size, aspect ratio, and image number |
|
for each sample. Batches within a sample share the same aspect ratio and image number. |
|
""" |
|
def __init__(self, |
|
sampler, |
|
image_num_range, |
|
h_range, |
|
epoch=0, |
|
seed=42, |
|
max_img_per_gpu=48): |
|
""" |
|
Initializes the dynamic batch sampler. |
|
|
|
Args: |
|
sampler: Instance of DynamicDistributedSampler. |
|
aspect_ratio_range: List containing [min_aspect_ratio, max_aspect_ratio]. |
|
image_num_range: List containing [min_images, max_images] per sample. |
|
epoch: Current epoch number. |
|
seed: Random seed for reproducibility. |
|
max_img_per_gpu: Maximum number of images to fit in GPU memory. |
|
""" |
|
self.sampler = sampler |
|
self.image_num_range = image_num_range |
|
self.h_range = h_range |
|
self.rng = random.Random() |
|
|
|
|
|
|
|
self.image_num_weights = {num_images: float(num_images**2) for num_images in range(image_num_range[0], image_num_range[1]+1)} |
|
|
|
|
|
self.possible_nums = np.array([n for n in self.image_num_weights.keys() |
|
if self.image_num_range[0] <= n <= self.image_num_range[1]]) |
|
|
|
|
|
weights = [self.image_num_weights[n] for n in self.possible_nums] |
|
self.normalized_weights = np.array(weights) / sum(weights) |
|
|
|
|
|
self.max_img_per_gpu = max_img_per_gpu |
|
|
|
|
|
self.set_epoch(epoch + seed) |
|
|
|
def set_epoch(self, epoch): |
|
""" |
|
Sets the epoch for this sampler, affecting the random sequence. |
|
|
|
Args: |
|
epoch: The epoch number. |
|
""" |
|
self.sampler.set_epoch(epoch) |
|
self.epoch = epoch |
|
self.rng.seed(epoch * 100) |
|
|
|
def __iter__(self): |
|
""" |
|
Yields batches of samples with synchronized dynamic parameters. |
|
|
|
Returns: |
|
Iterator yielding batches of indices with associated parameters. |
|
""" |
|
sampler_iterator = iter(self.sampler) |
|
|
|
while True: |
|
try: |
|
|
|
random_image_num = int(np.random.choice(self.possible_nums, p=self.normalized_weights)) |
|
random_ps_h = np.random.randint(low=(self.h_range[0] // 14), high=(self.h_range[1] // 14)+1) |
|
|
|
|
|
self.sampler.update_parameters( |
|
image_num=random_image_num, |
|
ps_h=random_ps_h |
|
) |
|
|
|
|
|
batch_size = self.max_img_per_gpu / random_image_num |
|
batch_size = np.floor(batch_size).astype(int) |
|
batch_size = max(1, batch_size) |
|
|
|
|
|
current_batch = [] |
|
for _ in range(batch_size): |
|
try: |
|
item = next(sampler_iterator) |
|
current_batch.append(item) |
|
except StopIteration: |
|
break |
|
|
|
if not current_batch: |
|
break |
|
|
|
yield current_batch |
|
|
|
except StopIteration: |
|
break |
|
|
|
def __len__(self): |
|
|
|
return 1000000 |
|
|
|
|
|
class DynamicDistributedSampler(DistributedSampler): |
|
""" |
|
Extends PyTorch's DistributedSampler to include dynamic aspect_ratio and image_num |
|
parameters, which can be passed into the dataset's __getitem__ method. |
|
""" |
|
def __init__( |
|
self, |
|
dataset, |
|
num_replicas: Optional[int] = None, |
|
rank: Optional[int] = None, |
|
shuffle: bool = False, |
|
seed: int = 0, |
|
drop_last: bool = False, |
|
): |
|
super().__init__( |
|
dataset, |
|
num_replicas=num_replicas, |
|
rank=rank, |
|
shuffle=shuffle, |
|
seed=seed, |
|
drop_last=drop_last |
|
) |
|
self.image_num = None |
|
self.ps_h = None |
|
|
|
def __iter__(self): |
|
""" |
|
Yields a sequence of (index, image_num, aspect_ratio). |
|
Relies on the parent class's logic for shuffling/distributing |
|
the indices across replicas, then attaches extra parameters. |
|
""" |
|
indices_iter = super().__iter__() |
|
|
|
for idx in indices_iter: |
|
yield (idx, self.image_num, self.ps_h, ) |
|
|
|
def update_parameters(self, image_num, ps_h): |
|
""" |
|
Updates dynamic parameters for each new epoch or iteration. |
|
|
|
Args: |
|
aspect_ratio: The aspect ratio to set. |
|
image_num: The number of images to set. |
|
""" |
|
self.image_num = image_num |
|
self.ps_h = ps_h |
|
|
|
class MixedBatchSampler(BatchSampler): |
|
"""Sample one batch from a selected dataset with given probability. |
|
Compatible with datasets at different resolution |
|
""" |
|
|
|
def __init__( |
|
self, src_dataset_ls, batch_size, num_context_views, world_size=1, rank=0, prob=None, sampler=None, generator=None |
|
): |
|
self.base_sampler = None |
|
self.batch_size = batch_size |
|
self.num_context_views = num_context_views |
|
self.world_size = world_size |
|
self.rank = rank |
|
self.drop_last = True |
|
self.generator = generator |
|
|
|
self.src_dataset_ls = src_dataset_ls |
|
self.n_dataset = len(self.src_dataset_ls) |
|
|
|
|
|
self.dataset_length = [len(ds) for ds in self.src_dataset_ls] |
|
self.cum_dataset_length = [ |
|
sum(self.dataset_length[:i]) for i in range(self.n_dataset) |
|
] |
|
|
|
|
|
self.src_batch_samplers = [] |
|
for ds in self.src_dataset_ls: |
|
sampler = DynamicDistributedSampler(ds, num_replicas=self.world_size, rank=self.rank, seed=42, shuffle=True) |
|
sampler.set_epoch(0) |
|
|
|
if hasattr(ds, "epoch"): |
|
ds.epoch = 0 |
|
if hasattr(ds, "set_epoch"): |
|
ds.set_epoch(0) |
|
batch_sampler = DynamicBatchSampler( |
|
sampler, |
|
[2, ds.cfg.view_sampler.num_context_views], |
|
ds.cfg.input_image_shape, |
|
seed=42, |
|
max_img_per_gpu=ds.cfg.view_sampler.max_img_per_gpu |
|
) |
|
self.src_batch_samplers.append(batch_sampler) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Setting epoch for all underlying BatchedRandomSamplers") |
|
|
|
|
|
self.raw_batches = [ |
|
list(bs) for bs in self.src_batch_samplers |
|
] |
|
self.n_batches = [len(b) for b in self.raw_batches] |
|
self.n_total_batch = sum(self.n_batches) |
|
|
|
|
|
if prob is None: |
|
|
|
self.prob = torch.tensor(self.n_batches) / self.n_total_batch |
|
else: |
|
self.prob = torch.as_tensor(prob) |
|
|
|
def __iter__(self): |
|
"""Yields batches of indices in the format of (sample_idx, feat_idx) tuples, |
|
where indices correspond to ConcatDataset of src_dataset_ls |
|
""" |
|
for _ in range(self.n_total_batch): |
|
idx_ds = torch.multinomial( |
|
self.prob, 1, replacement=True, generator=self.generator |
|
).item() |
|
|
|
if 0 == len(self.raw_batches[idx_ds]): |
|
self.raw_batches[idx_ds] = list(self.src_batch_samplers[idx_ds]) |
|
|
|
|
|
batch_raw = self.raw_batches[idx_ds].pop() |
|
|
|
|
|
shift = self.cum_dataset_length[idx_ds] |
|
processed_batch = [] |
|
|
|
for item in batch_raw: |
|
|
|
processed_item = (item[0] + shift, item[1], item[2]) |
|
processed_batch.append(processed_item) |
|
yield processed_batch |
|
|
|
def set_epoch(self, epoch): |
|
"""Set epoch for all underlying BatchedRandomSamplers""" |
|
for sampler in self.src_batch_samplers: |
|
sampler.set_epoch(epoch) |
|
|
|
self.raw_batches = [list(bs) for bs in self.src_batch_samplers] |
|
|
|
def __len__(self): |
|
return self.n_total_batch |
|
|
|
def round_by(total, multiple, up=False): |
|
if up: |
|
total = total + multiple - 1 |
|
return (total // multiple) * multiple |