AnySplat / src /dataset /shims /augmentation_shim.py
alexnasa's picture
Upload 243 files
2568013 verified
import copy
import random
import numpy as np
import torch
from jaxtyping import Float
from torch import Tensor
from ..types import AnyExample, AnyViews
def reflect_extrinsics(
extrinsics: Float[Tensor, "*batch 4 4"],
) -> Float[Tensor, "*batch 4 4"]:
reflect = torch.eye(4, dtype=torch.float32, device=extrinsics.device)
reflect[0, 0] = -1
return reflect @ extrinsics @ reflect
def reflect_views(views: AnyViews) -> AnyViews:
if "depth" in views.keys():
return {
**views,
"image": views["image"].flip(-1),
"extrinsics": reflect_extrinsics(views["extrinsics"]),
"depth": views["depth"].flip(-1),
}
else:
return {
**views,
"image": views["image"].flip(-1),
"extrinsics": reflect_extrinsics(views["extrinsics"]),
}
def apply_augmentation_shim(
example: AnyExample,
generator: torch.Generator | None = None,
) -> AnyExample:
"""Randomly augment the training images."""
# Do not augment with 50% chance.
if torch.rand(tuple(), generator=generator) < 0.5:
return example
return {
**example,
"context": reflect_views(example["context"]),
"target": reflect_views(example["target"]),
}
def rotate_90_degrees(
image: torch.Tensor, depth_map: torch.Tensor | None, extri_opencv: torch.Tensor, intri_opencv: torch.Tensor, clockwise=True
):
"""
Rotates the input image, depth map, and camera parameters by 90 degrees.
Applies one of two 90-degree rotations:
- Clockwise
- Counterclockwise (if clockwise=False)
The extrinsic and intrinsic matrices are adjusted accordingly to maintain
correct camera geometry.
Args:
image (torch.Tensor):
Input image tensor of shape (C, H, W).
depth_map (torch.Tensor or None):
Depth map tensor of shape (H, W), or None if not available.
extri_opencv (torch.Tensor):
Extrinsic matrix (3x4) in OpenCV convention.
intri_opencv (torch.Tensor):
Intrinsic matrix (3x3).
clockwise (bool):
If True, rotates the image 90 degrees clockwise; else 90 degrees counterclockwise.
Returns:
tuple:
(
rotated_image,
rotated_depth_map,
new_extri_opencv,
new_intri_opencv
)
Where each is the updated version after the rotation.
"""
image_height, image_width = image.shape[-2:]
# Rotate the image and depth map
rotated_image, rotated_depth_map = rotate_image_and_depth_rot90(image, depth_map, clockwise)
# Adjust the intrinsic matrix
new_intri_opencv = adjust_intrinsic_matrix_rot90(intri_opencv, image_width, image_height, clockwise)
# Adjust the extrinsic matrix
new_extri_opencv = adjust_extrinsic_matrix_rot90(extri_opencv, clockwise)
return (
rotated_image,
rotated_depth_map,
new_extri_opencv,
new_intri_opencv,
)
def rotate_image_and_depth_rot90(image: torch.Tensor, depth_map: torch.Tensor | None, clockwise: bool):
"""
Rotates the given image and depth map by 90 degrees (clockwise or counterclockwise).
Args:
image (torch.Tensor):
Input image tensor of shape (C, H, W).
depth_map (torch.Tensor or None):
Depth map tensor of shape (H, W), or None if not available.
clockwise (bool):
If True, rotate 90 degrees clockwise; else 90 degrees counterclockwise.
Returns:
tuple:
(rotated_image, rotated_depth_map)
"""
rotated_depth_map = None
if clockwise:
rotated_image = torch.rot90(image, k=-1, dims=[-2, -1])
if depth_map is not None:
rotated_depth_map = torch.rot90(depth_map, k=-1, dims=[-2, -1])
else:
rotated_image = torch.rot90(image, k=1, dims=[-2, -1])
if depth_map is not None:
rotated_depth_map = torch.rot90(depth_map, k=1, dims=[-2, -1])
return rotated_image, rotated_depth_map
def adjust_extrinsic_matrix_rot90(extri_opencv: torch.Tensor, clockwise: bool):
"""
Adjusts the extrinsic matrix (3x4) for a 90-degree rotation of the image.
The rotation is in the image plane. This modifies the camera orientation
accordingly. The function applies either a clockwise or counterclockwise
90-degree rotation.
Args:
extri_opencv (torch.Tensor):
Extrinsic matrix (3x4) in OpenCV convention.
clockwise (bool):
If True, rotate extrinsic for a 90-degree clockwise image rotation;
otherwise, counterclockwise.
Returns:
torch.Tensor:
A new 3x4 extrinsic matrix after the rotation.
"""
R = extri_opencv[:3, :3]
t = extri_opencv[:3, 3]
if clockwise:
R_rotation = torch.tensor([
[0, -1, 0],
[1, 0, 0],
[0, 0, 1]
], dtype=extri_opencv.dtype, device=extri_opencv.device)
else:
R_rotation = torch.tensor([
[0, 1, 0],
[-1, 0, 0],
[0, 0, 1]
], dtype=extri_opencv.dtype, device=extri_opencv.device)
new_R = torch.matmul(R_rotation, R)
new_t = torch.matmul(R_rotation, t)
new_extri_opencv = torch.cat((new_R, new_t.reshape(-1, 1)), dim=1)
new_extri_opencv = torch.cat((new_extri_opencv,
torch.tensor([[0, 0, 0, 1]],
dtype=extri_opencv.dtype, device=extri_opencv.device)), dim=0)
return new_extri_opencv
def adjust_intrinsic_matrix_rot90(intri_opencv: torch.Tensor, image_width: int, image_height: int, clockwise: bool):
"""
Adjusts the intrinsic matrix (3x3) for a 90-degree rotation of the image in the image plane.
Args:
intri_opencv (torch.Tensor):
Intrinsic matrix (3x3).
image_width (int):
Original width of the image.
image_height (int):
Original height of the image.
clockwise (bool):
If True, rotate 90 degrees clockwise; else 90 degrees counterclockwise.
Returns:
torch.Tensor:
A new 3x3 intrinsic matrix after the rotation.
"""
intri_opencv = copy.deepcopy(intri_opencv)
intri_opencv[0, :] *= image_width
intri_opencv[1, :] *= image_height
fx, fy, cx, cy = (
intri_opencv[0, 0],
intri_opencv[1, 1],
intri_opencv[0, 2],
intri_opencv[1, 2],
)
new_intri_opencv = torch.eye(3, dtype=intri_opencv.dtype, device=intri_opencv.device)
if clockwise:
new_intri_opencv[0, 0] = fy
new_intri_opencv[1, 1] = fx
new_intri_opencv[0, 2] = image_height - cy
new_intri_opencv[1, 2] = cx
else:
new_intri_opencv[0, 0] = fy
new_intri_opencv[1, 1] = fx
new_intri_opencv[0, 2] = cy
new_intri_opencv[1, 2] = image_width - cx
new_intri_opencv[0, :] /= image_height
new_intri_opencv[1, :] /= image_width
return new_intri_opencv