|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from typing import Literal |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
from .croco.blocks import DecoderBlock |
|
from .croco.croco import CroCoNet |
|
from .croco.misc import fill_default_args, freeze_all_params, transpose_to_landscape, is_symmetrized, interleave, \ |
|
make_batch_symmetric |
|
from .croco.patch_embed import get_patch_embed |
|
from .backbone import Backbone |
|
from src.geometry.camera_emb import get_intrinsic_embedding |
|
|
|
inf = float('inf') |
|
|
|
|
|
croco_params = { |
|
'ViTLarge_BaseDecoder': { |
|
'enc_depth': 24, |
|
'dec_depth': 12, |
|
'enc_embed_dim': 1024, |
|
'dec_embed_dim': 768, |
|
'enc_num_heads': 16, |
|
'dec_num_heads': 12, |
|
'pos_embed': 'RoPE100', |
|
'img_size': (512, 512), |
|
}, |
|
} |
|
|
|
default_dust3r_params = { |
|
'enc_depth': 24, |
|
'dec_depth': 12, |
|
'enc_embed_dim': 1024, |
|
'dec_embed_dim': 768, |
|
'enc_num_heads': 16, |
|
'dec_num_heads': 12, |
|
'pos_embed': 'RoPE100', |
|
'patch_embed_cls': 'PatchEmbedDust3R', |
|
'img_size': (512, 512), |
|
'head_type': 'dpt', |
|
'output_mode': 'pts3d', |
|
'depth_mode': ('exp', -inf, inf), |
|
'conf_mode': ('exp', 1, inf) |
|
} |
|
|
|
|
|
@dataclass |
|
class BackboneCrocoCfg: |
|
name: Literal["croco"] |
|
model: Literal["ViTLarge_BaseDecoder", "ViTBase_SmallDecoder", "ViTBase_BaseDecoder"] |
|
patch_embed_cls: str = 'PatchEmbedDust3R' |
|
asymmetry_decoder: bool = True |
|
intrinsics_embed_loc: Literal["encoder", "decoder", "none"] = 'none' |
|
intrinsics_embed_degree: int = 0 |
|
intrinsics_embed_type: Literal["pixelwise", "linear", "token"] = 'token' |
|
|
|
|
|
class AsymmetricCroCoMulti(CroCoNet): |
|
""" Two siamese encoders, followed by two decoders. |
|
The goal is to output 3d points directly, both images in view1's frame |
|
(hence the asymmetry). |
|
""" |
|
|
|
def __init__(self, cfg: BackboneCrocoCfg, d_in: int) -> None: |
|
|
|
self.intrinsics_embed_loc = cfg.intrinsics_embed_loc |
|
self.intrinsics_embed_degree = cfg.intrinsics_embed_degree |
|
self.intrinsics_embed_type = cfg.intrinsics_embed_type |
|
self.intrinsics_embed_encoder_dim = 0 |
|
self.intrinsics_embed_decoder_dim = 0 |
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise': |
|
self.intrinsics_embed_encoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3 |
|
elif self.intrinsics_embed_loc == 'decoder' and self.intrinsics_embed_type == 'pixelwise': |
|
self.intrinsics_embed_decoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3 |
|
|
|
self.patch_embed_cls = cfg.patch_embed_cls |
|
self.croco_args = fill_default_args(croco_params[cfg.model], CroCoNet.__init__) |
|
|
|
super().__init__(**croco_params[cfg.model]) |
|
|
|
if cfg.asymmetry_decoder: |
|
self.dec_blocks2 = deepcopy(self.dec_blocks) |
|
|
|
if self.intrinsics_embed_type == 'linear' or self.intrinsics_embed_type == 'token': |
|
self.intrinsic_encoder = nn.Linear(9, 1024) |
|
|
|
|
|
|
|
|
|
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768, in_chans=3): |
|
in_chans = in_chans + self.intrinsics_embed_encoder_dim |
|
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim, in_chans) |
|
|
|
def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec): |
|
self.dec_depth = dec_depth |
|
self.dec_embed_dim = dec_embed_dim |
|
|
|
enc_embed_dim = enc_embed_dim + self.intrinsics_embed_decoder_dim |
|
self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) |
|
|
|
self.dec_blocks = nn.ModuleList([ |
|
DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope) |
|
for i in range(dec_depth)]) |
|
|
|
self.dec_norm = norm_layer(dec_embed_dim) |
|
|
|
def load_state_dict(self, ckpt, **kw): |
|
|
|
new_ckpt = dict(ckpt) |
|
if not any(k.startswith('dec_blocks2') for k in ckpt): |
|
for key, value in ckpt.items(): |
|
if key.startswith('dec_blocks'): |
|
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value |
|
return super().load_state_dict(new_ckpt, **kw) |
|
|
|
def set_freeze(self, freeze): |
|
assert freeze in ['none', 'mask', 'encoder'], f"unexpected freeze={freeze}" |
|
to_be_frozen = { |
|
'none': [], |
|
'mask': [self.mask_token], |
|
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], |
|
'encoder_decoder': [self.mask_token, self.patch_embed, self.enc_blocks, self.enc_norm, self.decoder_embed, self.dec_blocks, self.dec_blocks2, self.dec_norm], |
|
} |
|
freeze_all_params(to_be_frozen[freeze]) |
|
|
|
def _set_prediction_head(self, *args, **kwargs): |
|
""" No prediction head """ |
|
return |
|
|
|
def _encode_image(self, image, true_shape, intrinsics_embed=None): |
|
|
|
x, pos = self.patch_embed(image, true_shape=true_shape) |
|
|
|
if intrinsics_embed is not None: |
|
|
|
if self.intrinsics_embed_type == 'linear': |
|
x = x + intrinsics_embed |
|
elif self.intrinsics_embed_type == 'token': |
|
x = torch.cat((x, intrinsics_embed), dim=1) |
|
add_pose = pos[:, 0:1, :].clone() |
|
add_pose[:, :, 0] += (pos[:, -1, 0].unsqueeze(-1) + 1) |
|
pos = torch.cat((pos, add_pose), dim=1) |
|
|
|
|
|
assert self.enc_pos_embed is None |
|
|
|
|
|
for blk in self.enc_blocks: |
|
x = blk(x, pos) |
|
|
|
x = self.enc_norm(x) |
|
return x, pos, None |
|
|
|
def _decoder(self, feat, pose, extra_embed=None): |
|
b, v, l, c = feat.shape |
|
final_output = [feat] |
|
if extra_embed is not None: |
|
feat = torch.cat((feat, extra_embed), dim=-1) |
|
|
|
|
|
f = rearrange(feat, "b v l c -> (b v) l c") |
|
f = self.decoder_embed(f) |
|
f = rearrange(f, "(b v) l c -> b v l c", b=b, v=v) |
|
final_output.append(f) |
|
|
|
def generate_ctx_views(x): |
|
b, v, l, c = x.shape |
|
ctx_views = x.unsqueeze(1).expand(b, v, v, l, c) |
|
mask = torch.arange(v).unsqueeze(0) != torch.arange(v).unsqueeze(1) |
|
ctx_views = ctx_views[:, mask].reshape(b, v, v - 1, l, c) |
|
ctx_views = ctx_views.flatten(2, 3) |
|
return ctx_views.contiguous() |
|
|
|
pos_ctx = generate_ctx_views(pose) |
|
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): |
|
feat_current = final_output[-1] |
|
feat_current_ctx = generate_ctx_views(feat_current) |
|
|
|
f1, _ = blk1(feat_current[:, 0].contiguous(), feat_current_ctx[:, 0].contiguous(), pose[:, 0].contiguous(), pos_ctx[:, 0].contiguous()) |
|
f1 = f1.unsqueeze(1) |
|
|
|
f2, _ = blk2(rearrange(feat_current[:, 1:], "b v l c -> (b v) l c"), |
|
rearrange(feat_current_ctx[:, 1:], "b v l c -> (b v) l c"), |
|
rearrange(pose[:, 1:], "b v l c -> (b v) l c"), |
|
rearrange(pos_ctx[:, 1:], "b v l c -> (b v) l c")) |
|
f2 = rearrange(f2, "(b v) l c -> b v l c", b=b, v=v-1) |
|
|
|
final_output.append(torch.cat((f1, f2), dim=1)) |
|
|
|
|
|
del final_output[1] |
|
last_feat = rearrange(final_output[-1], "b v l c -> (b v) l c") |
|
last_feat = self.dec_norm(last_feat) |
|
final_output[-1] = rearrange(last_feat, "(b v) l c -> b v l c", b=b, v=v) |
|
return final_output |
|
|
|
def forward(self, |
|
context: dict, |
|
symmetrize_batch=False, |
|
return_views=False, |
|
): |
|
b, v, _, h, w = context["image"].shape |
|
images_all = context["image"] |
|
|
|
|
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise': |
|
intrinsic_embedding = get_intrinsic_embedding(context, degree=self.intrinsics_embed_degree) |
|
images_all = torch.cat((images_all, intrinsic_embedding), dim=2) |
|
|
|
intrinsic_embedding_all = None |
|
if self.intrinsics_embed_loc == 'encoder' and (self.intrinsics_embed_type == 'token' or self.intrinsics_embed_type == 'linear'): |
|
intrinsic_embedding = self.intrinsic_encoder(context["intrinsics"].flatten(2)) |
|
intrinsic_embedding_all = rearrange(intrinsic_embedding, "b v c -> (b v) c").unsqueeze(1) |
|
|
|
|
|
images_all = rearrange(images_all, "b v c h w -> (b v) c h w") |
|
shape_all = torch.tensor(images_all.shape[-2:])[None].repeat(b*v, 1) |
|
|
|
feat, pose, _ = self._encode_image(images_all, shape_all, intrinsic_embedding_all) |
|
|
|
feat = rearrange(feat, "(b v) l c -> b v l c", b=b, v=v) |
|
pose = rearrange(pose, "(b v) l c -> b v l c", b=b, v=v) |
|
|
|
|
|
dec_feat = self._decoder(feat, pose) |
|
shape = rearrange(shape_all, "(b v) c -> b v c", b=b, v=v) |
|
images = rearrange(images_all, "(b v) c h w -> b v c h w", b=b, v=v) |
|
|
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'token': |
|
dec_feat = list(dec_feat) |
|
for i in range(len(dec_feat)): |
|
dec_feat[i] = dec_feat[i][:, :, :-1] |
|
|
|
return dec_feat, shape, images |
|
|
|
@property |
|
def patch_size(self) -> int: |
|
return 16 |
|
|
|
@property |
|
def d_out(self) -> int: |
|
return 1024 |
|
|