|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import torch |
|
import torch.nn as nn |
|
import xformers.ops as xops |
|
from einops import rearrange |
|
from torch.nn import functional as F |
|
import numbers |
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-6): |
|
super(RMSNorm, self).__init__() |
|
self.eps = eps |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps) |
|
return self.scale * x / rms |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_planes, planes, norm_fn='group', stride=1): |
|
super(ResidualBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
num_groups = planes // 8 |
|
|
|
if norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
if not (stride == 1 and in_planes == planes): |
|
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
|
|
elif norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(planes) |
|
self.norm2 = nn.BatchNorm2d(planes) |
|
if not (stride == 1 and in_planes == planes): |
|
self.norm3 = nn.BatchNorm2d(planes) |
|
|
|
elif norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(planes) |
|
self.norm2 = nn.InstanceNorm2d(planes) |
|
if not (stride == 1 and in_planes == planes): |
|
self.norm3 = nn.InstanceNorm2d(planes) |
|
|
|
elif norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
self.norm2 = nn.Sequential() |
|
if not (stride == 1 and in_planes == planes): |
|
self.norm3 = nn.Sequential() |
|
|
|
if stride == 1 and in_planes == planes: |
|
self.downsample = None |
|
|
|
else: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) |
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.conv1(y) |
|
y = self.norm1(y) |
|
y = self.relu(y) |
|
y = self.conv2(y) |
|
y = self.norm2(y) |
|
y = self.relu(y) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
return self.relu(x + y) |
|
|
|
|
|
class UnetExtractor(nn.Module): |
|
def __init__(self, in_channel=3, encoder_dim=[256, 256, 256], norm_fn='group'): |
|
super().__init__() |
|
self.in_ds = nn.Sequential( |
|
nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3), |
|
nn.GroupNorm(num_groups=8, num_channels=64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.res1 = nn.Sequential( |
|
ResidualBlock(64, encoder_dim[0], stride=2, norm_fn=norm_fn), |
|
ResidualBlock(encoder_dim[0], encoder_dim[0], norm_fn=norm_fn) |
|
) |
|
self.res2 = nn.Sequential( |
|
ResidualBlock(encoder_dim[0], encoder_dim[1], stride=2, norm_fn=norm_fn), |
|
ResidualBlock(encoder_dim[1], encoder_dim[1], norm_fn=norm_fn) |
|
) |
|
self.res3 = nn.Sequential( |
|
ResidualBlock(encoder_dim[1], encoder_dim[2], stride=2, norm_fn=norm_fn), |
|
ResidualBlock(encoder_dim[2], encoder_dim[2], norm_fn=norm_fn), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.in_ds(x) |
|
x1 = self.res1(x) |
|
x2 = self.res2(x1) |
|
x3 = self.res3(x2) |
|
|
|
return x1, x2, x3 |
|
|
|
|
|
class MultiBasicEncoder(nn.Module): |
|
def __init__(self, output_dim=[128], encoder_dim=[64, 96, 128]): |
|
super(MultiBasicEncoder, self).__init__() |
|
|
|
|
|
self.conv2 = nn.Sequential( |
|
ResidualBlock(encoder_dim[2], encoder_dim[2], stride=1), |
|
nn.Conv2d(encoder_dim[2], encoder_dim[2] * 2, 3, padding=1)) |
|
|
|
|
|
output_list = [] |
|
for dim in output_dim: |
|
conv_out = nn.Sequential( |
|
ResidualBlock(encoder_dim[2], encoder_dim[2], stride=1), |
|
nn.Conv2d(encoder_dim[2], dim[2], 3, padding=1)) |
|
output_list.append(conv_out) |
|
|
|
self.outputs08 = nn.ModuleList(output_list) |
|
|
|
def forward(self, x): |
|
feat1, feat2 = self.conv2(x).split(dim=0, split_size=x.shape[0] // 2) |
|
|
|
outputs08 = [f(x) for f in self.outputs08] |
|
return outputs08, feat1, feat2 |
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, mlp_ratio=4., mlp_bias=False, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = int(in_features * mlp_ratio) |
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=mlp_bias) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=mlp_bias) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
""" |
|
x: (B, L, D) |
|
Returns: same shape as input |
|
""" |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim, head_dim=64, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., use_flashatt_v2=True): |
|
super().__init__() |
|
assert dim % head_dim == 0, 'dim must be divisible by head_dim' |
|
self.num_heads = dim // head_dim |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop_p = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim, bias=False) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.norm_q = RMSNorm(head_dim, eps=1e-5) |
|
self.norm_k = RMSNorm(head_dim, eps=1e-5) |
|
|
|
self.use_flashatt_v2 = use_flashatt_v2 |
|
|
|
def forward(self, x): |
|
""" |
|
x: (B, L, D) |
|
Returns: same shape as input |
|
""" |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
|
|
if self.use_flashatt_v2: |
|
qkv = qkv.permute(2, 0, 1, 3, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
q, k = self.norm_q(q).to(v.dtype), self.norm_k(k).to(v.dtype) |
|
x = xops.memory_efficient_attention(q, k, v, op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp), p=self.attn_drop_p) |
|
x = rearrange(x, 'b n h d -> b n (h d)') |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, dim, head_dim=64, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., use_flashatt_v2=True): |
|
super().__init__() |
|
assert dim % head_dim == 0, 'dim must be divisible by head_dim' |
|
self.num_heads = dim // head_dim |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.k = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.v = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
|
self.attn_drop_p = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim, bias=False) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.norm_q = RMSNorm(head_dim, eps=1e-5) |
|
self.norm_k = RMSNorm(head_dim, eps=1e-5) |
|
|
|
self.use_flashatt_v2 = use_flashatt_v2 |
|
|
|
def forward(self, x_q, x_kv): |
|
""" |
|
x_q: query input (B, L_q, D) |
|
x_kv: key-value input (B, L_kv, D) |
|
Returns: same shape as query input (B, L_q, D) |
|
""" |
|
B, N_q, C = x_q.shape |
|
_, N_kv, _ = x_kv.shape |
|
|
|
q = self.q(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads) |
|
k = self.k(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) |
|
v = self.v(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) |
|
|
|
if self.use_flashatt_v2: |
|
q, k = self.norm_q(q).to(v.dtype), self.norm_k(k).to(v.dtype) |
|
x = xops.memory_efficient_attention( |
|
q, k, v, |
|
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp), |
|
p=self.attn_drop_p |
|
) |
|
x = rearrange(x, 'b n h d -> b n (h d)') |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class TransformerBlockSelfAttn(nn.Module): |
|
def __init__(self, dim, head_dim, mlp_ratio=4., mlp_bias=False, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flashatt_v2=True): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim, bias=False) |
|
self.attn = SelfAttention( |
|
dim, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_flashatt_v2=use_flashatt_v2) |
|
self.norm2 = norm_layer(dim, bias=False) |
|
self.mlp = Mlp(in_features=dim, mlp_ratio=mlp_ratio, mlp_bias=mlp_bias, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x): |
|
""" |
|
x: (B, L, D) |
|
Returns: same shape as input |
|
""" |
|
y = self.attn(self.norm1(x)) |
|
x = x + y |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
class TransformerBlockCrossAttn(nn.Module): |
|
def __init__(self, dim, head_dim, mlp_ratio=4., mlp_bias=False, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flashatt_v2=True): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim, bias=False) |
|
self.attn = CrossAttention( |
|
dim, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_flashatt_v2=use_flashatt_v2) |
|
self.norm2 = norm_layer(dim, bias=False) |
|
self.mlp = Mlp(in_features=dim, mlp_ratio=mlp_ratio, mlp_bias=mlp_bias, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x_list): |
|
""" |
|
x_q: (B, L_q, D) |
|
x_kv: (B, L_kv, D) |
|
Returns: same shape as input |
|
""" |
|
x_q, x_kv = x_list |
|
y = self.attn(self.norm1(x_q), self.norm1(x_kv)) |
|
x = x_q + y |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
class AppearanceTransformer(nn.Module): |
|
def __init__(self, num_layers, attn_dim, head_dim, ca_incides=[1, 3, 5, 7]): |
|
super().__init__() |
|
self.attn_dim = attn_dim |
|
self.num_layers = num_layers |
|
self.blocks = nn.ModuleList() |
|
self.ca_incides = ca_incides |
|
|
|
for attn_index in range(num_layers): |
|
self.blocks.append(TransformerBlockSelfAttn(self.attn_dim, head_dim)) |
|
self.blocks[-1].apply(_init_weights) |
|
|
|
def forward(self, x, use_checkpoint=True): |
|
""" |
|
input_tokens: (B, L, D) |
|
aggregated_tokens: List of (B, L, D) |
|
Returns: B and D remain the same, L might change if there are merge layers |
|
""" |
|
for block in self.blocks: |
|
if use_checkpoint: |
|
x = torch.utils.checkpoint.checkpoint(block, x, use_reentrant=False) |
|
else: |
|
x = block(x) |
|
|
|
return x |
|
|
|
|
|
if __name__ == '__main__': |
|
data = torch.ones((1, 3, 1024, 1024)) |
|
|
|
model = UnetExtractor(in_channel=3, encoder_dim=[64, 96, 128]) |
|
|
|
x1, x2, x3 = model(data) |
|
print(x1.shape, x2.shape, x3.shape) |
|
|