# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# dpt head implementation for DUST3R | |
# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; | |
# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True | |
# the forward function also takes as input a dictionnary img_info with key "height" and "width" | |
# for PixelwiseTask, the output will be of dimension B x num_channels x H x W | |
# -------------------------------------------------------- | |
from einops import rearrange | |
from typing import List, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# import dust3r.utils.path_to_croco | |
from .dpt_block import DPTOutputAdapter, Interpolate, make_fusion_block | |
from .head_modules import UnetExtractor, AppearanceTransformer, _init_weights | |
from .postprocess import postprocess | |
import torchvision | |
def custom_interpolate( | |
x: torch.Tensor, | |
size: Tuple[int, int] = None, | |
scale_factor: float = None, | |
mode: str = "bilinear", | |
align_corners: bool = True, | |
) -> torch.Tensor: | |
""" | |
Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. | |
""" | |
if size is None: | |
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) | |
INT_MAX = 1610612736 | |
input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] | |
if input_elements > INT_MAX: | |
chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) | |
interpolated_chunks = [ | |
nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks | |
] | |
x = torch.cat(interpolated_chunks, dim=0) | |
return x.contiguous() | |
else: | |
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) | |
# class DPTOutputAdapter_fix(DPTOutputAdapter): | |
# """ | |
# Adapt croco's DPTOutputAdapter implementation for dust3r: | |
# remove duplicated weigths, and fix forward for dust3r | |
# """ | |
# | |
# def init(self, dim_tokens_enc=768): | |
# super().init(dim_tokens_enc) | |
# # these are duplicated weights | |
# del self.act_1_postprocess | |
# del self.act_2_postprocess | |
# del self.act_3_postprocess | |
# del self.act_4_postprocess | |
# | |
# self.scratch.refinenet1 = make_fusion_block(256 * 2, False, 1, expand=True) | |
# self.scratch.refinenet2 = make_fusion_block(256 * 2, False, 1, expand=True) | |
# self.scratch.refinenet3 = make_fusion_block(256 * 2, False, 1, expand=True) | |
# # self.scratch.refinenet4 = make_fusion_block(256 * 2, False, 1) | |
# | |
# self.depth_encoder = UnetExtractor(in_channel=3) | |
# self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True) | |
# self.out_conv = nn.Conv2d(256+3+4, 256, kernel_size=3, padding=1) | |
# self.out_relu = nn.ReLU(inplace=True) | |
# | |
# self.input_merger = nn.Sequential( | |
# # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1), | |
# nn.Conv2d(256+3+3, 256, kernel_size=3, padding=1), | |
# nn.ReLU(), | |
# ) | |
# | |
# def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None): | |
# assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' | |
# # H, W = input_info['image_size'] | |
# image_size = self.image_size if image_size is None else image_size | |
# H, W = image_size | |
# # Number of patches in height and width | |
# N_H = H // (self.stride_level * self.P_H) | |
# N_W = W // (self.stride_level * self.P_W) | |
# | |
# # Hook decoder onto 4 layers from specified ViT layers | |
# layers = [encoder_tokens[hook] for hook in self.hooks] | |
# | |
# # Extract only task-relevant tokens and ignore global tokens. | |
# layers = [self.adapt_tokens(l) for l in layers] | |
# | |
# # Reshape tokens to spatial representation | |
# layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] | |
# | |
# layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] | |
# # Project layers to chosen feature dim | |
# layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] | |
# | |
# # get depth features | |
# depth_features = self.depth_encoder(depths) | |
# depth_feature1, depth_feature2, depth_feature3 = depth_features | |
# | |
# # Fuse layers using refinement stages | |
# path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] | |
# path_3 = self.scratch.refinenet3(torch.cat([path_4, depth_feature3], dim=1), torch.cat([layers[2], depth_feature3], dim=1)) | |
# path_2 = self.scratch.refinenet2(torch.cat([path_3, depth_feature2], dim=1), torch.cat([layers[1], depth_feature2], dim=1)) | |
# path_1 = self.scratch.refinenet1(torch.cat([path_2, depth_feature1], dim=1), torch.cat([layers[0], depth_feature1], dim=1)) | |
# # path_3 = self.scratch.refinenet3(path_4, layers[2], depth_feature3) | |
# # path_2 = self.scratch.refinenet2(path_3, layers[1], depth_feature2) | |
# # path_1 = self.scratch.refinenet1(path_2, layers[0], depth_feature1) | |
# | |
# path_1 = self.feat_up(path_1) | |
# path_1 = torch.cat([path_1, imgs, depths], dim=1) | |
# if conf is not None: | |
# path_1 = torch.cat([path_1, conf], dim=1) | |
# path_1 = self.input_merger(path_1) | |
# | |
# # Output head | |
# out = self.head(path_1) | |
# | |
# return out | |
class DPTOutputAdapter_fix(DPTOutputAdapter): | |
""" | |
Adapt croco's DPTOutputAdapter implementation for dust3r: | |
remove duplicated weigths, and fix forward for dust3r | |
""" | |
def init(self, dim_tokens_enc=768): | |
super().init(dim_tokens_enc) | |
# these are duplicated weights | |
del self.act_1_postprocess | |
del self.act_2_postprocess | |
del self.act_3_postprocess | |
del self.act_4_postprocess | |
self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True) | |
# self.input_merger = nn.Sequential( | |
# # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1), | |
# # nn.Conv2d(3+6, 256, 7, 1, 3), | |
# nn.Conv2d(3, 256, 7, 1, 3), | |
# nn.ReLU(), | |
# ) | |
def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None): | |
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' | |
# H, W = input_info['image_size'] | |
image_size = self.image_size if image_size is None else image_size | |
H, W = image_size | |
# Number of patches in height and width | |
N_H = H // (self.stride_level * self.P_H) | |
N_W = W // (self.stride_level * self.P_W) | |
# Hook decoder onto 4 layers from specified ViT layers | |
layers = [encoder_tokens[hook] for hook in self.hooks] | |
# Extract only task-relevant tokens and ignore global tokens. | |
layers = [self.adapt_tokens(l) for l in layers] | |
# Reshape tokens to spatial representation | |
layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] | |
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] | |
# Project layers to chosen feature dim | |
layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] | |
# Fuse layers using refinement stages | |
path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] | |
path_3 = self.scratch.refinenet3(path_4, layers[2]) | |
path_2 = self.scratch.refinenet2(path_3, layers[1]) | |
path_1 = self.scratch.refinenet1(path_2, layers[0]) | |
# direct_img_feat = self.input_merger(imgs) | |
# actually, we just do interpolate here | |
# path_1 = self.feat_up(path_1) | |
path_1 = custom_interpolate(path_1, size=(H, W), mode='bilinear', align_corners=True) | |
# path_1 = F.interpolate(path_1, size=(H, W), mode='bilinear', align_corners=True) | |
# path_1 = path_1 + direct_img_feat | |
# path_1 = torch.cat([path_1, imgs], dim=1) | |
# Output head | |
# out = self.head(path_1) | |
out = path_1 | |
return out, [path_4, path_3, path_2] | |
class PixelwiseTaskWithDPT(nn.Module): | |
""" DPT module for dust3r, can return 3D points + confidence for all pixels""" | |
def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, | |
output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): | |
super(PixelwiseTaskWithDPT, self).__init__() | |
self.return_all_layers = True # backbone needs to return all layers | |
self.postprocess = postprocess | |
self.depth_mode = depth_mode | |
self.conf_mode = conf_mode | |
assert n_cls_token == 0, "Not implemented" | |
dpt_args = dict(output_width_ratio=output_width_ratio, | |
num_channels=num_channels, | |
**kwargs) | |
if hooks_idx is not None: | |
dpt_args.update(hooks=hooks_idx) | |
self.dpt = DPTOutputAdapter_fix(**dpt_args) | |
dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} | |
self.dpt.init(**dpt_init_args) | |
def forward(self, x, depths, imgs, img_info, conf=None): | |
out, interm_feats = self.dpt(x, depths, imgs, image_size=(img_info[0], img_info[1]), conf=conf) | |
if self.postprocess: | |
out = self.postprocess(out, self.depth_mode, self.conf_mode) | |
return out, interm_feats | |
class AttnBasedAppearanceHead(nn.Module): | |
""" | |
Attention head Appearence Reconstruction | |
""" | |
def __init__(self, num_channels, patch_size, feature_dim, last_dim, hooks_idx, dim_tokens, postprocess, depth_mode, conf_mode, head_type='gs_params'): | |
super().__init__() | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.hooks = hooks_idx | |
assert len(set(dim_tokens)) == 1 | |
self.tokenizer = nn.Linear(3 * self.patch_size[0] ** 2 + 512, dim_tokens[0], bias=False) | |
self.C_feat = 128 | |
self.vgg_feature_extractor = torchvision.models.vgg16(pretrained=True).features | |
# Freeze the VGG parameters | |
for param in self.vgg_feature_extractor.parameters(): | |
param.requires_grad = False | |
self.token_decoder = nn.Sequential( | |
nn.Linear(dim_tokens[0] * (len(self.hooks) + 1), self.C_feat * (self.patch_size[0] ** 2)), | |
nn.SiLU(), | |
nn.Linear(self.C_feat * (self.patch_size[0] ** 2), self.C_feat * (self.patch_size[0] ** 2)), | |
) | |
self.pixel_linear = nn.Linear(self.C_feat, self.num_channels) | |
def img_pts_tokenizer(self, imgs): | |
_, _, H, W = imgs.shape | |
# Process images through VGG to extract features | |
# imgs = imgs.permute(0, 2, 3, 1).contiguous() | |
with torch.no_grad(): | |
vgg_features = self.vgg_feature_extractor(imgs) | |
# 1. concat original images with vgg features and then patchify | |
vgg_features = F.interpolate(vgg_features, size=(H, W), mode='bilinear', align_corners=False) | |
combined = torch.cat([imgs, vgg_features], dim=1) # [B, C+512, H, W] | |
combined = combined.permute(0, 2, 3, 1).contiguous() | |
patch_size = self.patch_size | |
hh = H // patch_size[0] | |
ww = W // patch_size[1] | |
input_patches = rearrange(combined, "b (hh ph) (ww pw) c -> b (hh ww) (ph pw c)", | |
hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1]) | |
input_tokens = self.tokenizer(input_patches) | |
# 2. only use vgg features, use a shallow conv to get the token | |
# # Combine original images with VGG features | |
# imgs = torch.cat([imgs, vgg_features], dim=1) | |
# imgs = imgs.permute(0, 2, 3, 1).flatten(1, 2).contiguous() | |
# # Pachify | |
# patch_size = self.patch_size | |
# hh = H // patch_size[0] | |
# ww = W // patch_size[1] | |
# input = rearrange(imgs, "b (hh ph ww pw) d -> b (hh ww) (ph pw d)", hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1]) | |
# Tokenize the input images | |
input_tokens = self.tokenizer(input) | |
return input_tokens | |
def forward(self, x, depths, imgs, img_info, conf=None): | |
B, V, H, W = img_info | |
input_tokens = self.img_pts_tokenizer(imgs) | |
# Hook decoder onto 4 layers from specified ViT layers | |
layer_tokens = [x[hook] for hook in self.hooks] # [B, S, D] | |
# layer_tokens.append(input_tokens) | |
x = self.token_decoder(torch.cat(layer_tokens, dim=-1)) | |
x = x.view(B*V, (H // self.patch_size[0]) * (W // self.patch_size[1]), self.patch_size[0]**2, self.C_feat).flatten(1, 2).contiguous() | |
out_flat = self.pixel_linear(x) | |
return out_flat.view(B*V, H, W, -1).permute(0, 3, 1, 2) | |
# class Pixellevel_Linear_Pts3d(nn.Module): | |
# """ | |
# Pixel-level linear head for DUST3R | |
# Each pixel outputs: 3D point (+ confidence) | |
# """ | |
# def __init__(self, dec_embed_dim, patch_size, depth_mode, conf_mode, has_conf=False, index_hook=[-1]): | |
# super().__init__() | |
# self.patch_size = patch_size | |
# self.depth_mode = depth_mode | |
# self.conf_mode = conf_mode | |
# self.has_conf = has_conf | |
# self.dec_embed_dim = dec_embed_dim | |
# self.index_hook = index_hook | |
# # Total embedding dimension per token (possibly concatenated) | |
# D = self.dec_embed_dim * len(self.index_hook) | |
# # Ensure divisible into pixel-level features | |
# assert D % (self.patch_size**2) == 0, \ | |
# f"Embedding dim {D} not divisible by patch_size^2 ({self.patch_size**2})" | |
# # Feature dimension for each pixel | |
# self.C_feat = D // (self.patch_size**2) * 4 | |
# # Output channels: x,y,z (+ confidence) | |
# self.out_dim = 3 + int(self.has_conf) | |
# self.feat_expand = nn.Sequential(nn.Linear(D, 4*D), | |
# nn.SiLU(), | |
# nn.Linear(4*D, 4*D) | |
# ) | |
# # Per-pixel linear head | |
# self.pixel_linear = nn.Linear(self.C_feat, self.out_dim) | |
# def setup(self, croconet): | |
# pass | |
# def forward(self, decout, img_shape): | |
# H, W = img_shape | |
# # Combine specified decoder tokens: B x num_patches x D | |
# tokens = [decout[i] for i in self.index_hook] | |
# x = torch.cat(tokens, dim=-1) # B, S, D | |
# x = self.feat_expand(x) | |
# B, S, D = x.shape | |
# # Validate pixel count | |
# assert S * (self.patch_size**2) == H * W, \ | |
# f"Mismatch: S*ps^2 ({S*self.patch_size**2}) != H*W ({H*W})" | |
# # 1. Reshape embedding into pixel features | |
# # x -> B, S, (ps^2), C_feat -> flatten to B, (S*ps^2), C_feat | |
# x = x.view(B, S, self.patch_size**2, self.C_feat) | |
# x = x.reshape(B, S * self.patch_size**2, self.C_feat) | |
# # 2. Per-pixel linear output | |
# out_flat = self.pixel_linear(x) # B, S*ps^2, out_dim | |
# # 3. Reshape to image map: B x out_dim x H x W | |
# out = out_flat.permute(0, 2, 1).view(B, self.out_dim, H, W) | |
# # 4. Postprocess depth/conf | |
# return out | |
def create_gs_linear_head(net, has_conf=False, out_nchan=3, postprocess_func=postprocess): | |
""" | |
return PixelwiseTaskWithDPT for given net params | |
""" | |
assert net.dec_depth > 9 | |
l2 = net.dec_depth | |
feature_dim = net.feature_dim | |
last_dim = feature_dim//2 | |
ed = net.enc_embed_dim | |
dd = net.dec_embed_dim | |
try: | |
patch_size = net.patch_size | |
except: | |
patch_size = (16, 16) | |
return AttnBasedAppearanceHead(num_channels=out_nchan + has_conf, | |
patch_size=patch_size, | |
feature_dim=feature_dim, | |
last_dim=last_dim, | |
hooks_idx=[0, l2*2//4, l2*3//4, l2], | |
dim_tokens=[ed, dd, dd, dd], | |
postprocess=postprocess_func, | |
depth_mode=net.depth_mode, | |
conf_mode=net.conf_mode, | |
head_type='gs_params') | |