|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from einops import rearrange |
|
from typing import List |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .dpt_block import DPTOutputAdapter, Interpolate, make_fusion_block |
|
from src.model.encoder.vggt.heads.dpt_head import DPTHead |
|
from .head_modules import UnetExtractor, AppearanceTransformer, _init_weights |
|
from .postprocess import postprocess |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VGGT_DPT_GS_Head(DPTHead): |
|
def __init__(self, |
|
dim_in: int, |
|
patch_size: int = 14, |
|
output_dim: int = 83, |
|
activation: str = "inv_log", |
|
conf_activation: str = "expp1", |
|
features: int = 256, |
|
out_channels: List[int] = [256, 512, 1024, 1024], |
|
intermediate_layer_idx: List[int] = [4, 11, 17, 23], |
|
pos_embed: bool = True, |
|
feature_only: bool = False, |
|
down_ratio: int = 1, |
|
): |
|
super().__init__(dim_in, patch_size, output_dim, activation, conf_activation, features, out_channels, intermediate_layer_idx, pos_embed, feature_only, down_ratio) |
|
|
|
head_features_1 = 128 |
|
head_features_2 = 128 if output_dim > 50 else 32 |
|
self.input_merger = nn.Sequential( |
|
nn.Conv2d(3, head_features_2, 7, 1, 3), |
|
nn.ReLU(), |
|
) |
|
|
|
self.scratch.output_conv2 = nn.Sequential( |
|
nn.Conv2d(head_features_1, head_features_2, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), |
|
) |
|
|
|
def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, patch_start_idx: int = 5, image_size=None, conf=None, frames_chunk_size: int = 8): |
|
|
|
B, S, _, H, W = imgs.shape |
|
image_size = self.image_size if image_size is None else image_size |
|
|
|
|
|
if frames_chunk_size is None or frames_chunk_size >= S: |
|
return self._forward_impl(encoder_tokens, imgs, patch_start_idx) |
|
|
|
|
|
assert frames_chunk_size > 0 |
|
|
|
|
|
all_preds = [] |
|
|
|
for frames_start_idx in range(0, S, frames_chunk_size): |
|
frames_end_idx = min(frames_start_idx + frames_chunk_size, S) |
|
|
|
|
|
chunk_output = self._forward_impl( |
|
encoder_tokens, imgs, patch_start_idx, frames_start_idx, frames_end_idx |
|
) |
|
all_preds.append(chunk_output) |
|
|
|
|
|
return torch.cat(all_preds, dim=1) |
|
|
|
def _forward_impl(self, encoder_tokens: List[torch.Tensor], imgs, patch_start_idx: int = 5, frames_start_idx: int = None, frames_end_idx: int = None): |
|
|
|
if frames_start_idx is not None and frames_end_idx is not None: |
|
imgs = imgs[:, frames_start_idx:frames_end_idx] |
|
|
|
B, S, _, H, W = imgs.shape |
|
|
|
patch_h, patch_w = H // self.patch_size[0], W // self.patch_size[1] |
|
|
|
out = [] |
|
dpt_idx = 0 |
|
for layer_idx in self.intermediate_layer_idx: |
|
|
|
if len(encoder_tokens) > 10: |
|
x = encoder_tokens[layer_idx][:, :, patch_start_idx:] |
|
else: |
|
list_idx = self.intermediate_layer_idx.index(layer_idx) |
|
x = encoder_tokens[list_idx][:, :, patch_start_idx:] |
|
|
|
|
|
if frames_start_idx is not None and frames_end_idx is not None: |
|
x = x[:, frames_start_idx:frames_end_idx].contiguous() |
|
|
|
x = x.view(B * S, -1, x.shape[-1]) |
|
|
|
x = self.norm(x) |
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) |
|
|
|
x = self.projects[dpt_idx](x) |
|
if self.pos_embed: |
|
x = self._apply_pos_embed(x, W, H) |
|
x = self.resize_layers[dpt_idx](x) |
|
|
|
out.append(x) |
|
dpt_idx += 1 |
|
|
|
|
|
out = self.scratch_forward(out) |
|
direct_img_feat = self.input_merger(imgs.flatten(0,1)) |
|
out = F.interpolate(out, size=(H, W), mode='bilinear', align_corners=True) |
|
out = out + direct_img_feat |
|
|
|
if self.pos_embed: |
|
out = self._apply_pos_embed(out, W, H) |
|
|
|
out = self.scratch.output_conv2(out) |
|
out = out.view(B, S, *out.shape[1:]) |
|
return out |
|
|
|
|
|
class PixelwiseTaskWithDPT(nn.Module): |
|
""" DPT module for dust3r, can return 3D points + confidence for all pixels""" |
|
|
|
def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, |
|
output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): |
|
super(PixelwiseTaskWithDPT, self).__init__() |
|
self.return_all_layers = True |
|
self.postprocess = postprocess |
|
self.depth_mode = depth_mode |
|
self.conf_mode = conf_mode |
|
|
|
assert n_cls_token == 0, "Not implemented" |
|
dpt_args = dict(output_width_ratio=output_width_ratio, |
|
num_channels=num_channels, |
|
**kwargs) |
|
if hooks_idx is not None: |
|
dpt_args.update(hooks=hooks_idx) |
|
self.dpt = DPTOutputAdapter_fix(**dpt_args) |
|
dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} |
|
self.dpt.init(**dpt_init_args) |
|
|
|
def forward(self, x, depths, imgs, img_info, conf=None): |
|
out, interm_feats = self.dpt(x, depths, imgs, image_size=(img_info[0], img_info[1]), conf=conf) |
|
if self.postprocess: |
|
out = self.postprocess(out, self.depth_mode, self.conf_mode) |
|
return out, interm_feats |
|
|
|
def create_gs_dpt_head(net, has_conf=False, out_nchan=3, postprocess_func=postprocess): |
|
""" |
|
return PixelwiseTaskWithDPT for given net params |
|
""" |
|
assert net.dec_depth > 9 |
|
l2 = net.dec_depth |
|
feature_dim = net.feature_dim |
|
last_dim = feature_dim//2 |
|
ed = net.enc_embed_dim |
|
dd = net.dec_embed_dim |
|
try: |
|
patch_size = net.patch_size |
|
except: |
|
patch_size = (16, 16) |
|
|
|
return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf, |
|
patch_size=patch_size, |
|
feature_dim=feature_dim, |
|
last_dim=last_dim, |
|
hooks_idx=[0, l2*2//4, l2*3//4, l2], |
|
dim_tokens=[ed, dd, dd, dd], |
|
postprocess=postprocess_func, |
|
depth_mode=net.depth_mode, |
|
conf_mode=net.conf_mode, |
|
head_type='gs_params') |