|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import List, Dict, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .head_act import activate_head |
|
from .utils import create_uv_grid, position_grid_to_embed |
|
|
|
|
|
class DPTHead(nn.Module): |
|
""" |
|
DPT Head for dense prediction tasks. |
|
|
|
This implementation follows the architecture described in "Vision Transformers for Dense Prediction" |
|
(https://arxiv.org/abs/2103.13413). The DPT head processes features from a vision transformer |
|
backbone and produces dense predictions by fusing multi-scale features. |
|
|
|
Args: |
|
dim_in (int): Input dimension (channels). |
|
patch_size (int, optional): Patch size. Default is 14. |
|
output_dim (int, optional): Number of output channels. Default is 4. |
|
activation (str, optional): Activation type. Default is "inv_log". |
|
conf_activation (str, optional): Confidence activation type. Default is "expp1". |
|
features (int, optional): Feature channels for intermediate representations. Default is 256. |
|
out_channels (List[int], optional): Output channels for each intermediate layer. |
|
intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT. |
|
pos_embed (bool, optional): Whether to use positional embedding. Default is True. |
|
feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False. |
|
down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim_in: int, |
|
patch_size: int = 14, |
|
output_dim: int = 4, |
|
activation: str = "inv_log", |
|
conf_activation: str = "expp1", |
|
features: int = 256, |
|
out_channels: List[int] = [256, 512, 1024, 1024], |
|
intermediate_layer_idx: List[int] = [4, 11, 17, 23], |
|
pos_embed: bool = True, |
|
feature_only: bool = False, |
|
down_ratio: int = 1, |
|
) -> None: |
|
super(DPTHead, self).__init__() |
|
self.patch_size = patch_size |
|
self.activation = activation |
|
self.conf_activation = conf_activation |
|
self.pos_embed = pos_embed |
|
self.feature_only = feature_only |
|
self.down_ratio = down_ratio |
|
self.intermediate_layer_idx = intermediate_layer_idx |
|
|
|
self.norm = nn.LayerNorm(dim_in) |
|
|
|
|
|
self.projects = nn.ModuleList( |
|
[ |
|
nn.Conv2d( |
|
in_channels=dim_in, |
|
out_channels=oc, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
for oc in out_channels |
|
] |
|
) |
|
|
|
|
|
self.resize_layers = nn.ModuleList( |
|
[ |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 |
|
), |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 |
|
), |
|
nn.Identity(), |
|
nn.Conv2d( |
|
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 |
|
), |
|
] |
|
) |
|
|
|
self.scratch = _make_scratch( |
|
out_channels, |
|
features, |
|
expand=False, |
|
) |
|
|
|
|
|
self.scratch.stem_transpose = None |
|
self.scratch.refinenet1 = _make_fusion_block(features) |
|
self.scratch.refinenet2 = _make_fusion_block(features) |
|
self.scratch.refinenet3 = _make_fusion_block(features) |
|
self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False) |
|
|
|
head_features_1 = features |
|
head_features_2 = 32 |
|
|
|
if feature_only: |
|
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1) |
|
else: |
|
self.scratch.output_conv1 = nn.Conv2d( |
|
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1 |
|
) |
|
conv2_in_channels = head_features_1 // 2 |
|
|
|
self.scratch.output_conv2 = nn.Sequential( |
|
nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), |
|
) |
|
|
|
def forward( |
|
self, |
|
aggregated_tokens_list: List[torch.Tensor], |
|
images: torch.Tensor, |
|
patch_start_idx: int, |
|
frames_chunk_size: int = 8, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Forward pass through the DPT head, supports processing by chunking frames. |
|
Args: |
|
aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. |
|
images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. |
|
patch_start_idx (int): Starting index for patch tokens in the token sequence. |
|
Used to separate patch tokens from other tokens (e.g., camera or register tokens). |
|
frames_chunk_size (int, optional): Number of frames to process in each chunk. |
|
If None or larger than S, all frames are processed at once. Default: 8. |
|
|
|
Returns: |
|
Tensor or Tuple[Tensor, Tensor]: |
|
- If feature_only=True: Feature maps with shape [B, S, C, H, W] |
|
- Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W] |
|
""" |
|
B, S, _, H, W = images.shape |
|
|
|
|
|
if frames_chunk_size is None or frames_chunk_size >= S: |
|
return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) |
|
|
|
|
|
assert frames_chunk_size > 0 |
|
|
|
|
|
all_preds = [] |
|
all_conf = [] |
|
|
|
for frames_start_idx in range(0, S, frames_chunk_size): |
|
frames_end_idx = min(frames_start_idx + frames_chunk_size, S) |
|
|
|
|
|
if self.feature_only: |
|
chunk_output = self._forward_impl( |
|
aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx |
|
) |
|
all_preds.append(chunk_output) |
|
else: |
|
chunk_preds, chunk_conf = self._forward_impl( |
|
aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx |
|
) |
|
all_preds.append(chunk_preds) |
|
all_conf.append(chunk_conf) |
|
|
|
|
|
if self.feature_only: |
|
return torch.cat(all_preds, dim=1) |
|
else: |
|
return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1) |
|
|
|
def _forward_impl( |
|
self, |
|
aggregated_tokens_list: List[torch.Tensor], |
|
images: torch.Tensor, |
|
patch_start_idx: int, |
|
frames_start_idx: int = None, |
|
frames_end_idx: int = None, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Implementation of the forward pass through the DPT head. |
|
|
|
This method processes a specific chunk of frames from the sequence. |
|
|
|
Args: |
|
aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. |
|
images (Tensor): Input images with shape [B, S, 3, H, W]. |
|
patch_start_idx (int): Starting index for patch tokens. |
|
frames_start_idx (int, optional): Starting index for frames to process. |
|
frames_end_idx (int, optional): Ending index for frames to process. |
|
|
|
Returns: |
|
Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence). |
|
""" |
|
if frames_start_idx is not None and frames_end_idx is not None: |
|
images = images[:, frames_start_idx:frames_end_idx] |
|
|
|
B, S, _, H, W = images.shape |
|
|
|
patch_h, patch_w = H // self.patch_size, W // self.patch_size |
|
|
|
out = [] |
|
dpt_idx = 0 |
|
|
|
for layer_idx in self.intermediate_layer_idx: |
|
|
|
if len(aggregated_tokens_list) > 10: |
|
x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] |
|
else: |
|
list_idx = self.intermediate_layer_idx.index(layer_idx) |
|
x = aggregated_tokens_list[list_idx][:, :, patch_start_idx:] |
|
|
|
|
|
if frames_start_idx is not None and frames_end_idx is not None: |
|
x = x[:, frames_start_idx:frames_end_idx].contiguous() |
|
|
|
x = x.view(B * S, -1, x.shape[-1]) |
|
x = self.norm(x) |
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) |
|
|
|
x = self.projects[dpt_idx](x) |
|
if self.pos_embed: |
|
x = self._apply_pos_embed(x, W, H) |
|
|
|
x = self.resize_layers[dpt_idx](x) |
|
|
|
out.append(x) |
|
dpt_idx += 1 |
|
|
|
|
|
out = self.scratch_forward(out) |
|
|
|
out = custom_interpolate( |
|
out, |
|
(int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)), |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
|
|
if self.pos_embed: |
|
out = self._apply_pos_embed(out, W, H) |
|
|
|
if self.feature_only: |
|
return out.view(B, S, *out.shape[1:]) |
|
|
|
out = self.scratch.output_conv2(out) |
|
preds, conf = activate_head(out, activation=self.activation, conf_activation=self.conf_activation) |
|
|
|
preds = preds.view(B, S, *preds.shape[1:]) |
|
conf = conf.view(B, S, *conf.shape[1:]) |
|
return preds, conf |
|
|
|
def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor: |
|
""" |
|
Apply positional embedding to tensor x. |
|
""" |
|
patch_w = x.shape[-1] |
|
patch_h = x.shape[-2] |
|
pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device) |
|
pos_embed = position_grid_to_embed(pos_embed, x.shape[1]) |
|
pos_embed = pos_embed * ratio |
|
pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1) |
|
return x + pos_embed |
|
|
|
def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Forward pass through the fusion blocks. |
|
|
|
Args: |
|
features (List[Tensor]): List of feature maps from different layers. |
|
|
|
Returns: |
|
Tensor: Fused feature map. |
|
""" |
|
layer_1, layer_2, layer_3, layer_4 = features |
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1) |
|
layer_2_rn = self.scratch.layer2_rn(layer_2) |
|
layer_3_rn = self.scratch.layer3_rn(layer_3) |
|
layer_4_rn = self.scratch.layer4_rn(layer_4) |
|
|
|
out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) |
|
del layer_4_rn, layer_4 |
|
|
|
out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:]) |
|
del layer_3_rn, layer_3 |
|
|
|
out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:]) |
|
del layer_2_rn, layer_2 |
|
|
|
out = self.scratch.refinenet1(out, layer_1_rn) |
|
del layer_1_rn, layer_1 |
|
|
|
out = self.scratch.output_conv1(out) |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module: |
|
return FeatureFusionBlock( |
|
features, |
|
nn.ReLU(inplace=True), |
|
deconv=False, |
|
bn=False, |
|
expand=False, |
|
align_corners=True, |
|
size=size, |
|
has_residual=has_residual, |
|
groups=groups, |
|
) |
|
|
|
|
|
def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module: |
|
scratch = nn.Module() |
|
out_shape1 = out_shape |
|
out_shape2 = out_shape |
|
out_shape3 = out_shape |
|
if len(in_shape) >= 4: |
|
out_shape4 = out_shape |
|
|
|
if expand: |
|
out_shape1 = out_shape |
|
out_shape2 = out_shape * 2 |
|
out_shape3 = out_shape * 4 |
|
if len(in_shape) >= 4: |
|
out_shape4 = out_shape * 8 |
|
|
|
scratch.layer1_rn = nn.Conv2d( |
|
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups |
|
) |
|
scratch.layer2_rn = nn.Conv2d( |
|
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups |
|
) |
|
scratch.layer3_rn = nn.Conv2d( |
|
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups |
|
) |
|
if len(in_shape) >= 4: |
|
scratch.layer4_rn = nn.Conv2d( |
|
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups |
|
) |
|
return scratch |
|
|
|
|
|
class ResidualConvUnit(nn.Module): |
|
"""Residual convolution module.""" |
|
|
|
def __init__(self, features, activation, bn, groups=1): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.bn = bn |
|
self.groups = groups |
|
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) |
|
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) |
|
|
|
self.norm1 = None |
|
self.norm2 = None |
|
|
|
self.activation = activation |
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
|
|
out = self.activation(x) |
|
out = self.conv1(out) |
|
if self.norm1 is not None: |
|
out = self.norm1(out) |
|
|
|
out = self.activation(out) |
|
out = self.conv2(out) |
|
if self.norm2 is not None: |
|
out = self.norm2(out) |
|
|
|
return self.skip_add.add(out, x) |
|
|
|
|
|
class FeatureFusionBlock(nn.Module): |
|
"""Feature fusion block.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
activation, |
|
deconv=False, |
|
bn=False, |
|
expand=False, |
|
align_corners=True, |
|
size=None, |
|
has_residual=True, |
|
groups=1, |
|
): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super(FeatureFusionBlock, self).__init__() |
|
|
|
self.deconv = deconv |
|
self.align_corners = align_corners |
|
self.groups = groups |
|
self.expand = expand |
|
out_features = features |
|
if self.expand == True: |
|
out_features = features // 2 |
|
|
|
self.out_conv = nn.Conv2d( |
|
features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups |
|
) |
|
|
|
if has_residual: |
|
self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups) |
|
|
|
self.has_residual = has_residual |
|
self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups) |
|
|
|
self.skip_add = nn.quantized.FloatFunctional() |
|
self.size = size |
|
|
|
def forward(self, *xs, size=None): |
|
"""Forward pass. |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
output = xs[0] |
|
|
|
if self.has_residual: |
|
res = self.resConfUnit1(xs[1]) |
|
output = self.skip_add.add(output, res) |
|
|
|
output = self.resConfUnit2(output) |
|
|
|
if (size is None) and (self.size is None): |
|
modifier = {"scale_factor": 2} |
|
elif size is None: |
|
modifier = {"size": self.size} |
|
else: |
|
modifier = {"size": size} |
|
|
|
output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) |
|
output = self.out_conv(output) |
|
|
|
return output |
|
|
|
|
|
def custom_interpolate( |
|
x: torch.Tensor, |
|
size: Tuple[int, int] = None, |
|
scale_factor: float = None, |
|
mode: str = "bilinear", |
|
align_corners: bool = True, |
|
) -> torch.Tensor: |
|
""" |
|
Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. |
|
""" |
|
if size is None: |
|
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) |
|
|
|
INT_MAX = 1610612736 |
|
|
|
input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] |
|
|
|
if input_elements > INT_MAX: |
|
chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) |
|
interpolated_chunks = [ |
|
nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks |
|
] |
|
x = torch.cat(interpolated_chunks, dim=0) |
|
return x.contiguous() |
|
else: |
|
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) |
|
|