alexnasa's picture
Upload 243 files
2568013 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
def batchify_unproject_depth_map_to_point_map(
depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor
) -> torch.Tensor:
"""
Unproject a batch of depth maps to 3D world coordinates.
Args:
depth_map (torch.Tensor): Batch of depth maps of shape (B, V, H, W, 1) or (B, V, H, W)
extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (B, V, 3, 4)
intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (B, V, 3, 3)
Returns:
torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3)
"""
# Handle both (S, H, W, 1) and (S, H, W) cases
if depth_map.dim() == 5:
depth_map = depth_map.squeeze(-1) # (S, H, W)
# Generate batched camera coordinates
H, W = depth_map.shape[2:]
batch_size, num_views = depth_map.shape[0], depth_map.shape[1]
# Intrinsic parameters (S, 3, 3)
intrinsics_cam, extrinsics_cam, depth_map = intrinsics_cam.flatten(0, 1), extrinsics_cam.flatten(0, 1), depth_map.flatten(0, 1)
fu = intrinsics_cam[:, 0, 0] # (S,)
fv = intrinsics_cam[:, 1, 1] # (S,)
cu = intrinsics_cam[:, 0, 2] # (S,)
cv = intrinsics_cam[:, 1, 2] # (S,)
# Generate grid of pixel coordinates
u = torch.arange(W, device=depth_map.device)[None, None, :].expand(batch_size * num_views, H, W) # (S, H, W)
v = torch.arange(H, device=depth_map.device)[None, :, None].expand(batch_size * num_views, H, W) # (S, H, W)
# Unproject to camera coordinates (S, H, W, 3)
x_cam = (u - cu[:, None, None]) * depth_map / fu[:, None, None]
y_cam = (v - cv[:, None, None]) * depth_map / fv[:, None, None]
z_cam = depth_map
cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1) # (S, H, W, 3)
# Transform to world coordinates
cam_to_world = closed_form_inverse_se3(extrinsics_cam) # (S, 4, 4)
# homo transformation
homo_pts = torch.cat((cam_coords, torch.ones_like(cam_coords[..., :1])), dim=-1).flatten(1, 2)
world_coords = torch.bmm(cam_to_world, homo_pts.transpose(1, 2)).transpose(1, 2)[:, :, :3].view(batch_size*num_views, H, W, 3)
return world_coords.view(batch_size, num_views, H, W, 3)
def unproject_depth_map_to_point_map(
depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor
) -> torch.Tensor:
"""
Unproject a batch of depth maps to 3D world coordinates.
Args:
depth_map (torch.Tensor): Batch of depth maps of shape (S, H, W, 1) or (S, H, W)
extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (S, 3, 4)
intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (S, 3, 3)
Returns:
torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3)
"""
world_points_list = []
for frame_idx in range(depth_map.shape[0]):
cur_world_points, _, _ = depth_to_world_coords_points(
depth_map[frame_idx].squeeze(-1), extrinsics_cam[frame_idx], intrinsics_cam[frame_idx]
)
world_points_list.append(cur_world_points)
world_points_array = torch.stack(world_points_list, dim=0)
return world_points_array
def depth_to_world_coords_points(
depth_map: torch.Tensor,
extrinsic: torch.Tensor,
intrinsic: torch.Tensor,
eps=1e-8,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Convert a depth map to world coordinates.
Args:
depth_map (torch.Tensor): Depth map of shape (H, W).
intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3).
extrinsic (torch.Tensor): Camera extrinsic matrix of shape (3, 4). OpenCV camera coordinate convention, cam from world.
Returns:
tuple[torch.Tensor, torch.Tensor]: World coordinates (H, W, 3) and valid depth mask (H, W).
"""
if depth_map is None:
return None, None, None
# Valid depth mask
point_mask = depth_map > eps
# Convert depth map to camera coordinates
cam_coords_points = depth_to_cam_coords_points(depth_map, intrinsic)
# Multiply with the inverse of extrinsic matrix to transform to world coordinates
# extrinsic_inv is 4x4 (note closed_form_inverse_OpenCV is batched, the output is (N, 4, 4))
cam_to_world_extrinsic = closed_form_inverse_se3(extrinsic[None])[0]
R_cam_to_world = cam_to_world_extrinsic[:3, :3]
t_cam_to_world = cam_to_world_extrinsic[:3, 3]
# Apply the rotation and translation to the camera coordinates
world_coords_points = torch.matmul(cam_coords_points, R_cam_to_world.T) + t_cam_to_world # HxWx3, 3x3 -> HxWx3
return world_coords_points, cam_coords_points, point_mask
def depth_to_cam_coords_points(depth_map: torch.Tensor, intrinsic: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
Convert a depth map to camera coordinates.
Args:
depth_map (torch.Tensor): Depth map of shape (H, W).
intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3).
Returns:
tuple[torch.Tensor, torch.Tensor]: Camera coordinates (H, W, 3)
"""
H, W = depth_map.shape
assert intrinsic.shape == (3, 3), "Intrinsic matrix must be 3x3"
assert intrinsic[0, 1] == 0 and intrinsic[1, 0] == 0, "Intrinsic matrix must have zero skew"
# Intrinsic parameters
fu, fv = intrinsic[0, 0], intrinsic[1, 1]
cu, cv = intrinsic[0, 2], intrinsic[1, 2]
# Generate grid of pixel coordinates
u, v = torch.meshgrid(torch.arange(W, device=depth_map.device),
torch.arange(H, device=depth_map.device),
indexing='xy')
# Unproject to camera coordinates
x_cam = (u - cu) * depth_map / fu
y_cam = (v - cv) * depth_map / fv
z_cam = depth_map
# Stack to form camera coordinates
cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1).to(dtype=torch.float32)
return cam_coords
def closed_form_inverse_se3(se3, R=None, T=None):
"""
Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch.
If `R` and `T` are provided, they must correspond to the rotation and translation
components of `se3`. Otherwise, they will be extracted from `se3`.
Args:
se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices.
R (optional): Nx3x3 array or tensor of rotation matrices.
T (optional): Nx3x1 array or tensor of translation vectors.
Returns:
Inverted SE3 matrices with the same type and device as `se3`.
Shapes:
se3: (N, 4, 4)
R: (N, 3, 3)
T: (N, 3, 1)
"""
# Validate shapes
if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4):
raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.")
# Extract R and T if not provided
if R is None:
R = se3[:, :3, :3] # (N,3,3)
if T is None:
T = se3[:, :3, 3:] # (N,3,1)
# Transpose R
R_transposed = R.transpose(1, 2) # (N,3,3)
top_right = -torch.bmm(R_transposed, T) # (N,3,1)
inverted_matrix = torch.eye(4, 4, device=R.device)[None].repeat(len(R), 1, 1)
inverted_matrix = inverted_matrix.to(R.dtype)
inverted_matrix[:, :3, :3] = R_transposed
inverted_matrix[:, :3, 3:] = top_right
return inverted_matrix