|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
|
|
def batchify_unproject_depth_map_to_point_map( |
|
depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Unproject a batch of depth maps to 3D world coordinates. |
|
|
|
Args: |
|
depth_map (torch.Tensor): Batch of depth maps of shape (B, V, H, W, 1) or (B, V, H, W) |
|
extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (B, V, 3, 4) |
|
intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (B, V, 3, 3) |
|
|
|
Returns: |
|
torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3) |
|
""" |
|
|
|
|
|
if depth_map.dim() == 5: |
|
depth_map = depth_map.squeeze(-1) |
|
|
|
|
|
H, W = depth_map.shape[2:] |
|
batch_size, num_views = depth_map.shape[0], depth_map.shape[1] |
|
|
|
|
|
intrinsics_cam, extrinsics_cam, depth_map = intrinsics_cam.flatten(0, 1), extrinsics_cam.flatten(0, 1), depth_map.flatten(0, 1) |
|
fu = intrinsics_cam[:, 0, 0] |
|
fv = intrinsics_cam[:, 1, 1] |
|
cu = intrinsics_cam[:, 0, 2] |
|
cv = intrinsics_cam[:, 1, 2] |
|
|
|
|
|
u = torch.arange(W, device=depth_map.device)[None, None, :].expand(batch_size * num_views, H, W) |
|
v = torch.arange(H, device=depth_map.device)[None, :, None].expand(batch_size * num_views, H, W) |
|
|
|
|
|
x_cam = (u - cu[:, None, None]) * depth_map / fu[:, None, None] |
|
y_cam = (v - cv[:, None, None]) * depth_map / fv[:, None, None] |
|
z_cam = depth_map |
|
|
|
cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1) |
|
|
|
|
|
cam_to_world = closed_form_inverse_se3(extrinsics_cam) |
|
|
|
|
|
homo_pts = torch.cat((cam_coords, torch.ones_like(cam_coords[..., :1])), dim=-1).flatten(1, 2) |
|
world_coords = torch.bmm(cam_to_world, homo_pts.transpose(1, 2)).transpose(1, 2)[:, :, :3].view(batch_size*num_views, H, W, 3) |
|
|
|
return world_coords.view(batch_size, num_views, H, W, 3) |
|
|
|
def unproject_depth_map_to_point_map( |
|
depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Unproject a batch of depth maps to 3D world coordinates. |
|
|
|
Args: |
|
depth_map (torch.Tensor): Batch of depth maps of shape (S, H, W, 1) or (S, H, W) |
|
extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (S, 3, 4) |
|
intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (S, 3, 3) |
|
|
|
Returns: |
|
torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3) |
|
""" |
|
world_points_list = [] |
|
for frame_idx in range(depth_map.shape[0]): |
|
cur_world_points, _, _ = depth_to_world_coords_points( |
|
depth_map[frame_idx].squeeze(-1), extrinsics_cam[frame_idx], intrinsics_cam[frame_idx] |
|
) |
|
world_points_list.append(cur_world_points) |
|
world_points_array = torch.stack(world_points_list, dim=0) |
|
|
|
return world_points_array |
|
|
|
|
|
def depth_to_world_coords_points( |
|
depth_map: torch.Tensor, |
|
extrinsic: torch.Tensor, |
|
intrinsic: torch.Tensor, |
|
eps=1e-8, |
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Convert a depth map to world coordinates. |
|
|
|
Args: |
|
depth_map (torch.Tensor): Depth map of shape (H, W). |
|
intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3). |
|
extrinsic (torch.Tensor): Camera extrinsic matrix of shape (3, 4). OpenCV camera coordinate convention, cam from world. |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor]: World coordinates (H, W, 3) and valid depth mask (H, W). |
|
""" |
|
if depth_map is None: |
|
return None, None, None |
|
|
|
|
|
point_mask = depth_map > eps |
|
|
|
|
|
cam_coords_points = depth_to_cam_coords_points(depth_map, intrinsic) |
|
|
|
|
|
|
|
cam_to_world_extrinsic = closed_form_inverse_se3(extrinsic[None])[0] |
|
|
|
R_cam_to_world = cam_to_world_extrinsic[:3, :3] |
|
t_cam_to_world = cam_to_world_extrinsic[:3, 3] |
|
|
|
|
|
world_coords_points = torch.matmul(cam_coords_points, R_cam_to_world.T) + t_cam_to_world |
|
|
|
return world_coords_points, cam_coords_points, point_mask |
|
|
|
|
|
def depth_to_cam_coords_points(depth_map: torch.Tensor, intrinsic: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Convert a depth map to camera coordinates. |
|
|
|
Args: |
|
depth_map (torch.Tensor): Depth map of shape (H, W). |
|
intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3). |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor]: Camera coordinates (H, W, 3) |
|
""" |
|
H, W = depth_map.shape |
|
assert intrinsic.shape == (3, 3), "Intrinsic matrix must be 3x3" |
|
assert intrinsic[0, 1] == 0 and intrinsic[1, 0] == 0, "Intrinsic matrix must have zero skew" |
|
|
|
|
|
fu, fv = intrinsic[0, 0], intrinsic[1, 1] |
|
cu, cv = intrinsic[0, 2], intrinsic[1, 2] |
|
|
|
|
|
u, v = torch.meshgrid(torch.arange(W, device=depth_map.device), |
|
torch.arange(H, device=depth_map.device), |
|
indexing='xy') |
|
|
|
|
|
x_cam = (u - cu) * depth_map / fu |
|
y_cam = (v - cv) * depth_map / fv |
|
z_cam = depth_map |
|
|
|
|
|
cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1).to(dtype=torch.float32) |
|
|
|
return cam_coords |
|
|
|
|
|
def closed_form_inverse_se3(se3, R=None, T=None): |
|
""" |
|
Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch. |
|
|
|
If `R` and `T` are provided, they must correspond to the rotation and translation |
|
components of `se3`. Otherwise, they will be extracted from `se3`. |
|
|
|
Args: |
|
se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices. |
|
R (optional): Nx3x3 array or tensor of rotation matrices. |
|
T (optional): Nx3x1 array or tensor of translation vectors. |
|
|
|
Returns: |
|
Inverted SE3 matrices with the same type and device as `se3`. |
|
|
|
Shapes: |
|
se3: (N, 4, 4) |
|
R: (N, 3, 3) |
|
T: (N, 3, 1) |
|
""" |
|
|
|
if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4): |
|
raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.") |
|
|
|
|
|
if R is None: |
|
R = se3[:, :3, :3] |
|
if T is None: |
|
T = se3[:, :3, 3:] |
|
|
|
|
|
R_transposed = R.transpose(1, 2) |
|
top_right = -torch.bmm(R_transposed, T) |
|
inverted_matrix = torch.eye(4, 4, device=R.device)[None].repeat(len(R), 1, 1) |
|
inverted_matrix = inverted_matrix.to(R.dtype) |
|
|
|
inverted_matrix[:, :3, :3] = R_transposed |
|
inverted_matrix[:, :3, 3:] = top_right |
|
|
|
return inverted_matrix |
|
|