File size: 39,339 Bytes
49dd9ca fd6cf65 49dd9ca fd6cf65 49dd9ca fd6cf65 49dd9ca fd6cf65 49dd9ca fd6cf65 49dd9ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
import pandas as pd
import numpy as np
import json
import colorsys
import folium
import gradio as gr
from datetime import datetime
import os
from functools import lru_cache
import geopandas as gpd
from shapely.geometry import Point
from folium import plugins
import zipfile
import tempfile
import shutil
SEED = 42
# Initialize global variables
df = None
cluster_df = None
regions_gdf = None
# Add global variable for shapefile path
current_shp_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
def process_upload(file_obj):
"""Process uploaded CSV file"""
global df # ์ ์ญ ๋ณ์์์ ๋ช
์
if file_obj is None:
return "No file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.csv':
return "Please upload a CSV file.", None
# Try different encodings
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
# Remove rows where 'name' is null
original_len = len(temp_df)
temp_df = temp_df.dropna(subset=['name'])
rows_dropped = original_len - len(temp_df)
# Update the global df
df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
return f"File uploaded and processed successfully. {len(df)} records loaded with {encoding} encoding. {rows_dropped} rows with null names were removed.", file_name
except UnicodeDecodeError:
continue
except Exception as e:
return f"Error processing file with {encoding} encoding: {str(e)}", None
return "Could not process the file with any of the supported encodings.", None
except Exception as e:
return f"Error processing upload: {str(e)}", None
def process_cluster_upload(file_obj):
"""Process uploaded cluster CSV file"""
global cluster_df # ์ ์ญ ๋ณ์์์ ๋ช
์
if file_obj is None:
return "No cluster file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.csv':
return "Please upload a CSV file.", None
# Try different encodings
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
# Update the global cluster_df
cluster_df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
return f"Cluster file uploaded and processed successfully. {len(cluster_df)} records loaded with {encoding} encoding.", file_name
except UnicodeDecodeError:
continue
except Exception as e:
return f"Error processing cluster file with {encoding} encoding: {str(e)}", None
return "Could not process the cluster file with any of the supported encodings.", None
except Exception as e:
return f"Error processing cluster upload: {str(e)}", None
def process_shp_upload(file_obj):
"""Process uploaded shapefile ZIP"""
global regions_gdf, current_shp_path
if file_obj is None:
return "No file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.zip':
return "Please upload a ZIP file containing shapefile components.", None
# Create a temporary directory to extract files
with tempfile.TemporaryDirectory() as temp_dir:
# Extract ZIP contents
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Find .shp file in the extracted contents, excluding __MACOSX directory
shp_files = []
for root, _, files in os.walk(temp_dir):
# Skip __MACOSX directory
if '__MACOSX' in root:
continue
for file in files:
if file.endswith('.shp'):
shp_files.append(os.path.join(root, file))
if not shp_files:
return "No .shp file found in the ZIP archive.", None
# Use the first .shp file found
shp_path = shp_files[0]
try:
# Read the shapefile
regions_gdf = gpd.read_file(shp_path).to_crs("EPSG:4326")
# Create a permanent directory for the shapefiles if it doesn't exist
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
os.makedirs(permanent_dir, exist_ok=True)
# Generate a unique subdirectory name using timestamp
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
target_dir = os.path.join(permanent_dir, f'shapefile_{timestamp}')
os.makedirs(target_dir)
# Copy all related files to the permanent location
shp_base = os.path.splitext(shp_path)[0]
for ext in ['.shp', '.shx', '.dbf', '.prj', '.cpg', '.sbn', '.sbx']:
src_file = f"{shp_base}{ext}"
if os.path.exists(src_file):
shutil.copy2(src_file, target_dir)
# Update the current shapefile path to point to the permanent location
current_shp_path = os.path.join(target_dir, os.path.basename(shp_path))
return f"Shapefile uploaded and processed successfully. {len(regions_gdf)} features loaded.", file_name
except Exception as e:
return f"Error processing shapefile: {str(e)}", None
except Exception as e:
return f"Error processing ZIP upload: {str(e)}", None
def print_route_info(df, shp_file_path, sample_checkbox=False, path_checkbox=False):
"""Print route information to console based on checkbox settings"""
output_lines = []
for _, row in df.iterrows():
if sample_checkbox:
date_str = pd.to_datetime(row['created']).strftime('%Y-%m-%d %H:%M:%S')
output_lines.append(f"\nSample: {row['name']} ({date_str})")
output_lines.append(f" - Vehicle: {row['vehicle_type']}")
if path_checkbox:
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
output_lines.append(" - Path list:")
# Create GeoDataFrame for location lookup
coords = []
for loc in route:
if isinstance(loc, dict):
if 'latitude' in loc and 'longitude' in loc:
lat = float(loc['latitude']) / 360000.0
lng = float(loc['longitude']) / 360000.0
coords.append((lat, lng))
if coords:
gdf_sample = gpd.GeoDataFrame(
geometry=[Point(lon, lat) for lat, lon in coords],
crs="EPSG:4326"
)
# Load regions shapefile using provided path
regions_gdf = gpd.read_file(shp_file_path).to_crs("EPSG:4326")
# Join with regions
joined = gpd.sjoin(gdf_sample, regions_gdf, how="left", predicate="within")
# Get available columns for location info
location_columns = []
for col in ['NAME_1', 'NAME_2', 'NAME_3', 'TYPE_3']:
if col in joined.columns:
location_columns.append(col)
if location_columns:
# Create location string based on available columns
joined['location'] = joined[location_columns].astype(str).apply(
lambda x: "_".join(str(val) for val in x), axis=1
)
else:
# Fallback to coordinates if no matching columns found
joined['location'] = joined.geometry.apply(
lambda x: f"lat: {x.y:.6f}, lon: {x.x:.6f}"
)
for _, point in joined.iterrows():
output_lines.append(f" - {point['location']}")
output_lines.append("-" * 50)
return "\n".join(output_lines)
def get_colors(n, s=1.0, v=1.0):
colors = []
for i in range(n):
h = i / n
s = s # Maximum saturation
v = v # Maximum value/brightness
r, g, b = colorsys.hsv_to_rgb(h, s, v)
colors.append(f'#{int(r*255):02x}{int(g*255):02x}{int(b*255):02x}')
return colors
def cal_paths_folium(df, shp_file_path, n_samples=None, start_d=None, end_d=None, company=None,
sample_checkbox=False, path_checkbox=False):
log_messages = []
working_df = df.copy()
log_messages.append(f"Initial dataframe size: {len(working_df)} rows")
# Convert created column to datetime and remove timezone information
working_df['created'] = pd.to_datetime(working_df['created']).dt.tz_localize(None)
# Date filtering with better error handling and debugging
if start_d:
try:
start_d = pd.to_datetime(start_d).normalize()
log_messages.append(f"Filtering from date: {start_d}")
working_df = working_df[working_df['created'] >= start_d]
log_messages.append(f"After start date filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in start date filtering: {str(e)}")
if end_d:
try:
end_d = pd.to_datetime(end_d).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
log_messages.append(f"Filtering until date: {end_d}")
working_df = working_df[working_df['created'] <= end_d]
log_messages.append(f"After end date filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in end date filtering: {str(e)}")
# Company filtering with better error handling and debugging
if company and company.strip():
try:
log_messages.append(f"Filtering for company: {company}")
working_df = working_df[working_df['name'].str.contains(company, na=False)]
log_messages.append(f"After company filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in company filtering: {str(e)}")
# Sample n
if n_samples and len(working_df) > 0:
working_df = working_df.sample(n=min(n_samples, len(working_df)), random_state=42)
log_messages.append(f"After sampling: {len(working_df)} rows")
# Print column names and a few rows for debugging
log_messages.append(f"Columns in dataframe: {list(working_df.columns)}")
if len(working_df) > 0:
log_messages.append("First row sample:")
log_messages.append(str(working_df.iloc[0]))
# Generate colors
colors = get_colors(max(1, len(working_df)), s=0.5, v=1.0)
# Print route information
if sample_checkbox or path_checkbox:
console_output = print_route_info(working_df, shp_file_path, sample_checkbox, path_checkbox)
log_messages.append(console_output)
# Generate route data
routes = []
for i, (_, row) in enumerate(working_df.iterrows()):
# Convert route to dict/list if it's a string
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
# Handle different possible formats of coordinates
coords = []
for loc in route:
if isinstance(loc, dict):
# Handle 'latitude/longitude' format
if 'latitude' in loc and 'longitude' in loc:
lat = float(loc['latitude'])
lng = float(loc['longitude'])
# Scale coordinates if needed
if abs(lat) > 90 or abs(lng) > 180:
lat /= 360000.0
lng /= 360000.0
coords.append([lat, lng])
# Handle 'lat/lng' format
elif 'lat' in loc and 'lng' in loc:
lat = float(loc['lat'])
lng = float(loc['lng'])
# Scale coordinates if needed
if abs(lat) > 90 or abs(lng) > 180:
lat /= 360000.0
lng /= 360000.0
coords.append([lat, lng])
if coords:
routes.append({
'coordinates': coords,
'color': colors[i % len(colors)],
'company': str(row.get('name', 'Unknown')),
'created': row['created'].strftime('%Y-%m-%d %H:%M:%S')
})
print(f"Generated {len(routes)} valid routes")
log_messages.append(f"Generated {len(routes)} valid routes")
# routes์ ํจ๊ป ๋ก๊ทธ ๋ฉ์์ง๋ ๋ฐํ
return routes, "\n".join(log_messages)
def plot_paths_folium(routes, cluster_df=cluster_df, cluster_num_samples=None, cluster_company_search=None, cluster_date_start=None, cluster_date_end=None, map_location="Seoul", map_type="Satellite map", path_type="point+line", brightness=100):
"""Plot routes on a Folium map with customizable settings"""
# Map center coordinates based on location selection
centers = {
"Korea": (36.5, 127.5),
"Seoul": (37.5665, 126.9780),
"Busan": (35.1796, 129.0756)
}
zoom_levels = {
"Korea": 7,
"Seoul": 12,
"Busan": 12
}
center = centers.get(map_location, centers["Korea"])
zoom_start = zoom_levels.get(map_location, 7)
# Create map with appropriate type
if map_type == "Satellite map":
m = folium.Map(location=center, zoom_start=zoom_start,
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
attr='Esri')
else:
m = folium.Map(location=center, zoom_start=zoom_start)
path_fg = folium.FeatureGroup(name="Path").add_to(m)
# Add routes to the map
for route in routes:
if path_type in ["point", "point+line"] and len(route['coordinates']) > 0:
for i, coord in enumerate(route['coordinates']):
x_icon_html = f'''
<div style="
color: {route['color']};
font-weight: bold;
font-size: 10px;
transform: translate(2px, -3px);">
ร
</div>
'''
folium.DivIcon(
html=x_icon_html
).add_to(folium.Marker(
location=coord,
popup=f"{route.get('company', 'Unknown')} - Point {i+1}"
).add_to(path_fg))
if path_type in ["line", "point+line"]:
folium.PolyLine(
route['coordinates'],
color=route['color'],
weight=0.5,
dash_array='1, 1', # ์ ์ ์คํ์ผ (์ ๊ธธ์ด, ๊ฐ๊ฒฉ)
popup=route.get('company', 'Unknown')
).add_to(path_fg)
cluster_df['t_pickup'] = pd.to_datetime(cluster_df['t_pickup'])
if cluster_date_start:
# Convert string to datetime without timezone
cluster_date_start = pd.to_datetime(cluster_date_start).normalize()
cluster_df = cluster_df[cluster_df['t_pickup'] >= cluster_date_start]
if cluster_date_end:
# Convert string to datetime without timezone
cluster_date_end = pd.to_datetime(cluster_date_end).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
cluster_df = cluster_df[cluster_df['t_pickup'] <= cluster_date_end]
if cluster_company_search:
cluster_df = cluster_df.query("company.str.contains(@cluster_company_search)")
if cluster_num_samples:
cluster_df = cluster_df.sample(n=min(cluster_num_samples, len(cluster_df)), random_state=42)
cluster_geo_fg = folium.FeatureGroup(name="Cluster Geo").add_to(m)
cluster_pmi_fg = folium.FeatureGroup(name="Cluster PMI", show=False).add_to(m)
cluster_geo_values = cluster_df['cluster_geo'].unique()
cluster_pmi_values = cluster_df['cluster_pmi'].unique()
# Create a mapping from cluster numbers to color indices
cluster_geo_mapping = {val: idx for idx, val in enumerate(sorted(cluster_geo_values))}
cluster_pmi_mapping = {val: idx for idx, val in enumerate(sorted(cluster_pmi_values))}
cluster_geo_colors = get_colors(len(cluster_geo_values))
cluster_pmi_colors = get_colors(len(cluster_pmi_values))
for _, row in cluster_df.iterrows():
# Geo cluster markers remain as circles
folium.CircleMarker(
location=(row['latitude'], row['longitude']),
popup=f"{row['company']} - Cluster {row['cluster_geo']}",
radius=3,
color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
fill=True,
fill_color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
).add_to(cluster_geo_fg)
# PMI cluster markers as stars
star_html = f'''
<div style="
color: {cluster_pmi_colors[cluster_pmi_mapping[row['cluster_pmi']]]};
font-size: 16px;
transform: translate(-1px, -7px);
text-shadow: 1px 1px 2px black;">
โ
</div>
'''
folium.DivIcon(
html=star_html
).add_to(folium.Marker(
location=(row['latitude'], row['longitude']),
popup=f"{row['company']} - Cluster {row['cluster_pmi']}",
).add_to(cluster_pmi_fg))
# Group points by cluster for both geo and pmi
geo_clusters = {}
pmi_clusters = {}
for _, row in cluster_df.iterrows():
# For geo clusters
geo_cluster = row['cluster_geo']
if geo_cluster not in geo_clusters:
geo_clusters[geo_cluster] = []
geo_clusters[geo_cluster].append((row['latitude'], row['longitude']))
# For pmi clusters
pmi_cluster = row['cluster_pmi']
if pmi_cluster not in pmi_clusters:
pmi_clusters[pmi_cluster] = []
pmi_clusters[pmi_cluster].append((row['latitude'], row['longitude']))
# Function to create a closed path by connecting nearest points
def create_closed_path(points):
if len(points) <= 1:
return points
# Start with the first point
path = [points[0]]
remaining_points = points[1:]
# Keep finding the closest point until none are left
while remaining_points:
current = path[-1]
# Find closest point to the current point
closest_idx = 0
closest_dist = float('inf')
for i, point in enumerate(remaining_points):
dist = ((current[0] - point[0])**2 + (current[1] - point[1])**2)**0.5
if dist < closest_dist:
closest_dist = dist
closest_idx = i
# Add the closest point to the path
path.append(remaining_points[closest_idx])
remaining_points.pop(closest_idx)
# Connect back to the first point to close the path
path.append(path[0])
return path
# Create polylines for geo clusters
for cluster_num, points in geo_clusters.items():
if len(points) >= 2: # Need at least 2 points to make a line
path = create_closed_path(points)
folium.PolyLine(
path,
color=cluster_geo_colors[cluster_geo_mapping[cluster_num]],
weight=2,
).add_to(cluster_geo_fg)
# Create polylines for pmi clusters
for cluster_num, points in pmi_clusters.items():
if len(points) >= 2: # Need at least 2 points to make a line
path = create_closed_path(points)
folium.PolyLine(
path,
color=cluster_pmi_colors[cluster_pmi_mapping[cluster_num]],
weight=2,
).add_to(cluster_pmi_fg)
# Create custom legend HTML with three scrollable sections
legend_html = '''
<div style="position: fixed;
top: 120px;
right: 10px;
width: 200px;
background-color: transparent;
z-index: 1000;">
<!-- Path Legend -->
<div style="margin-bottom: 5px;
background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Path Routes</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add path routes to the legend with larger X symbol
for route in routes:
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;
color: {route['color']};
font-weight: bold;
font-size: 20px;">
ร
</div>
<span style="word-break: break-all;">
{route.get('company', 'Unknown')}_{route.get('created', '')}
</span>
</div>
'''
# Get unique cluster values from already filtered cluster_df
visible_cluster_geo = sorted(cluster_df['cluster_geo'].unique())
visible_cluster_pmi = sorted(cluster_df['cluster_pmi'].unique())
# Add Cluster Geo section with larger circle symbol
legend_html += '''
</div>
</div>
<!-- Cluster Geo Legend -->
<div style="margin-bottom: 5px;
background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster Geo</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add only visible cluster geo information with larger circles
for cluster_value in visible_cluster_geo:
color = cluster_geo_colors[cluster_geo_mapping[cluster_value]]
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;">
<div style="width: 10px;
height: 10px;
background-color: {color};
border-radius: 50%;"></div>
</div>
<span style="word-break: break-all;">
Cluster {cluster_value}
</span>
</div>
'''
# Add Cluster PMI section with larger star symbol
legend_html += '''
</div>
</div>
<!-- Cluster PMI Legend -->
<div style="background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster PMI</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add only visible cluster PMI information with larger stars
for cluster_value in visible_cluster_pmi:
color = cluster_pmi_colors[cluster_pmi_mapping[cluster_value]]
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;
color: {color};
font-size: 18px;
text-shadow: 1px 1px 2px black;">
โ
</div>
<span style="word-break: break-all;">
Cluster {cluster_value}
</span>
</div>
'''
legend_html += '''
</div>
</div>
</div>
'''
folium.LayerControl(collapsed=False).add_to(m)
folium.plugins.Fullscreen(
position="bottomright",
title="Expand me",
title_cancel="Exit me",
force_separate_button=True,
).add_to(m)
# Add the legend to the map
m.get_root().html.add_child(folium.Element(legend_html))
# Add custom CSS for brightness control - only affecting the satellite tiles
custom_css = f"""
<style>
.leaflet-tile-pane img {{
filter: brightness({brightness}%);
}}
</style>
"""
m.get_root().header.add_child(folium.Element(custom_css))
return m._repr_html_()
def update_map(map_location, map_type, path_type, n_samples, company, date_start, date_end,
cluster_num_samples, cluster_company_search, cluster_date_start, cluster_date_end,
pick_all_date, sample_checkbox, path_checkbox, brightness_slider):
"""Update the map based on user selections"""
global df, cluster_df, regions_gdf, current_shp_path
log_messages = []
log_messages.append(f"Updating map with settings: Location={map_location}, Type={map_type}, Path={path_type}")
# Check if data is loaded
if df is None:
log_messages.append("Loading default data because df is None")
df_loaded, msg, _ = load_default_data()
if df_loaded is None:
return "No data available. Please upload a CSV file.", None
else:
log_messages.append(f"Using existing df with {len(df)} rows")
try:
# Process date filters with better error handling
start_d = None
end_d = None
if not pick_all_date:
if date_start and date_start.strip():
start_d = date_start
log_messages.append(f"Using start date: {start_d}")
if date_end and date_end.strip():
end_d = date_end
log_messages.append(f"Using end date: {end_d}")
else:
log_messages.append("Using all dates")
# Check if shapefile exists at current_shp_path
if not os.path.exists(current_shp_path):
log_messages.append(f"Warning: Shapefile not found at {current_shp_path}")
# Try to find the most recently uploaded shapefile
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
if os.path.exists(permanent_dir):
subdirs = [os.path.join(permanent_dir, d) for d in os.listdir(permanent_dir)
if os.path.isdir(os.path.join(permanent_dir, d))]
if subdirs:
# Get the most recent directory
latest_dir = max(subdirs, key=os.path.getctime)
# Find .shp file in that directory
shp_files = [f for f in os.listdir(latest_dir) if f.endswith('.shp')]
if shp_files:
current_shp_path = os.path.join(latest_dir, shp_files[0])
log_messages.append(f"Using most recent shapefile: {current_shp_path}")
# Calculate routes with full error reporting
try:
routes, cal_logs = cal_paths_folium(df, current_shp_path, n_samples=n_samples,
start_d=start_d, end_d=end_d,
company=company, sample_checkbox=sample_checkbox,
path_checkbox=path_checkbox)
log_messages.append(cal_logs)
except Exception as e:
log_messages.append(f"Error in route calculation: {str(e)}")
import traceback
log_messages.append(traceback.format_exc())
return "\n".join(log_messages), None
# Check if we have routes to display
if not routes:
log_messages.append("No routes to display after applying filters.")
empty_map = folium.Map(location=(36.5, 127.5), zoom_start=7)
return "\n".join(log_messages), empty_map._repr_html_()
# Create map
html_output = plot_paths_folium(routes, cluster_df, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, map_location, map_type, path_type, brightness_slider)
return "\n".join(log_messages), html_output
except Exception as e:
error_msg = f"Error updating map: {str(e)}"
log_messages.append(error_msg)
import traceback
log_messages.append(traceback.format_exc())
return "\n".join(log_messages), None
# Initialize data
def load_default_data():
"""Load the default dataset"""
global df, cluster_df, regions_gdf
default_file = 'data/20250122_Order_List_202411_12_CJW.csv'
default_cluster_file = 'data/path_clustering_2024.csv'
default_gadm_shp_file = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
messages = []
path_filename = ""
cluster_filename = ""
shp_filename = ""
# Try different encodings for the main file
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
df = pd.read_csv(default_file, engine='python', encoding=encoding)
path_filename = os.path.basename(default_file)
messages.append(f"Path file loaded successfully: {path_filename}")
break
except UnicodeDecodeError:
continue
except Exception as e:
messages.append(f"Error loading path file: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
# Try different encodings for the cluster file
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
cluster_df = pd.read_csv(default_cluster_file, engine='python', encoding=encoding)
cluster_filename = os.path.basename(default_cluster_file)
messages.append(f"Cluster file loaded successfully: {cluster_filename}")
break
except UnicodeDecodeError:
continue
except Exception as e:
messages.append(f"Error loading cluster file: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
# Load shapefile
try:
regions_gdf = gpd.read_file(default_gadm_shp_file).to_crs("EPSG:4326")
shp_filename = os.path.basename(default_gadm_shp_file)
messages.append(f"Shapefile loaded successfully: {shp_filename}")
except Exception as e:
messages.append(f"Error loading shapefile: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
return df, cluster_df, regions_gdf, "\n".join(messages), path_filename, cluster_filename, shp_filename
init_n_samples = 20
init_path_company_search = "๋ฐฑ๋
ํํธ"
init_path_date_start = "2024-12-01"
init_path_date_end = "2024-12-31"
init_cluster_num_samples = 200
init_cluster_date_start = "2025-02-24"
init_cluster_date_end = "2025-02-24"
init_brightness = 50
init_df, init_cluster_df, init_regions_gdf, init_msg, init_path_file, init_cluster_file, init_shp_file = load_default_data()
# Initial map
init_shp_file_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
init_routes, _ = cal_paths_folium(df, init_shp_file_path, n_samples=init_n_samples,
start_d=init_path_date_start, end_d=init_path_date_end,
company=init_path_company_search) if df is not None else ([], "")
init_html = plot_paths_folium(routes=init_routes, cluster_df=init_cluster_df, cluster_num_samples=init_cluster_num_samples, cluster_date_start=init_cluster_date_start, cluster_date_end=init_cluster_date_end, brightness=init_brightness) if init_routes else None
# Create Gradio interface
with gr.Blocks() as demo:
# Layout
with gr.Column():
# Map controls
with gr.Row():
map_location = gr.Radio(
["Korea", "Seoul", "Busan"],
label="Map Location Shortcuts",
value="Seoul"
)
map_type = gr.Radio(
["Normal map", "Satellite map"],
label="Map Type",
value="Satellite map"
)
path_type = gr.Radio(
["point", "line", "point+line"],
label="Path Type",
value="point+line"
)
brightness_slider = gr.Slider(
minimum=1,
maximum=300,
value=50,
step=1,
label="Map Brightness (%)"
)
# Map display
map_html = gr.HTML(init_html, elem_classes=["map-container"])
generate_btn = gr.Button("Generate Map")
# Filter controls
with gr.Column():
with gr.Row():
path_file_upload = gr.File(label="Upload Path File", height=89, file_count="single", scale=1)
path_current_file = gr.Textbox(label="Current Path File", value=init_path_file, scale=2)
with gr.Row():
cluster_file_upload = gr.File(label="Upload Cluster File", height=89, file_count="single", scale=1)
cluster_current_file = gr.Textbox(label="Current Cluster File", value=init_cluster_file, scale=2)
with gr.Row():
gadm_shp_upload = gr.File(label="Upload gadm .zip File", height=89, file_count="single", scale=1)
gadm_shp_current_file = gr.Textbox(label="Current gadm .zip File", value=init_shp_file, scale=2)
with gr.Row():
with gr.Row():
path_num_samples = gr.Number(label="Path Sample Count", precision=0, value=20, scale=1, minimum=1, maximum=200)
path_company_search = gr.Textbox(label="Path Company Search", value="๋ฐฑ๋
ํํธ", scale=2)
with gr.Row():
cluster_num_samples = gr.Number(label="Cluster Sample Count", precision=0, value=200, scale=1, minimum=1, maximum=200)
cluster_company_search = gr.Textbox(label="Cluster Company Search", scale=2)
# Date range
with gr.Row():
with gr.Row():
path_date_start = gr.Textbox(label="Path Start Date", placeholder="YYYY-MM-DD", value="2024-12-01")
path_date_end = gr.Textbox(label="Path End Date", placeholder="YYYY-MM-DD", value="2024-12-31")
with gr.Row():
cluster_date_start = gr.Textbox(label="Cluster Start Date", placeholder="YYYY-MM-DD", value="2025-02-24")
cluster_date_end = gr.Textbox(label="Cluster End Date", placeholder="YYYY-MM-DD", value="2025-02-24")
# Checkboxes
with gr.Row():
pick_all_date = gr.Checkbox(label="Select All Dates")
sample_checkbox = gr.Checkbox(label="Print Sample", value=True)
path_checkbox = gr.Checkbox(label="Print Path")
# Console
console = gr.Textbox(
label="Console",
lines=10,
max_lines=100,
interactive=False,
value=init_msg,
elem_classes=["console"]
)
# Style
gr.Markdown("""
<style>
.map-container {
margin: 10px;
width: calc(100% - 20px);
height: 600px;
}
.console {
background-color: black;
color: white;
font-family: monospace;
overflow-y: scroll;
}
</style>
""")
# Event handlers
path_file_upload.upload(
fn=process_upload,
inputs=[path_file_upload],
outputs=[console, path_current_file]
)
cluster_file_upload.upload(
fn=process_cluster_upload,
inputs=[cluster_file_upload],
outputs=[console, cluster_current_file]
)
gadm_shp_upload.upload(
fn=process_shp_upload,
inputs=[gadm_shp_upload],
outputs=[console, gadm_shp_current_file]
)
generate_btn.click(
fn=update_map,
inputs=[
map_location, map_type, path_type, path_num_samples, path_company_search,
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
brightness_slider
],
outputs=[console, map_html]
)
# Auto-update radio buttons
for control in [map_location, map_type, path_type, brightness_slider]:
control.change(
fn=update_map,
inputs=[
map_location, map_type, path_type, path_num_samples, path_company_search,
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
brightness_slider
],
outputs=[console, map_html]
)
# Launch the app
demo.launch(share=True) |