alemem64's picture
20250312 change upload, search ui scale
fd6cf65
raw
history blame
39.3 kB
import pandas as pd
import numpy as np
import json
import colorsys
import folium
import gradio as gr
from datetime import datetime
import os
from functools import lru_cache
import geopandas as gpd
from shapely.geometry import Point
from folium import plugins
import zipfile
import tempfile
import shutil
SEED = 42
# Initialize global variables
df = None
cluster_df = None
regions_gdf = None
# Add global variable for shapefile path
current_shp_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
def process_upload(file_obj):
"""Process uploaded CSV file"""
global df # μ „μ—­ λ³€μˆ˜μž„μ„ λͺ…μ‹œ
if file_obj is None:
return "No file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.csv':
return "Please upload a CSV file.", None
# Try different encodings
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
# Remove rows where 'name' is null
original_len = len(temp_df)
temp_df = temp_df.dropna(subset=['name'])
rows_dropped = original_len - len(temp_df)
# Update the global df
df = temp_df # μ „μ—­ λ³€μˆ˜ μ—…λ°μ΄νŠΈ
return f"File uploaded and processed successfully. {len(df)} records loaded with {encoding} encoding. {rows_dropped} rows with null names were removed.", file_name
except UnicodeDecodeError:
continue
except Exception as e:
return f"Error processing file with {encoding} encoding: {str(e)}", None
return "Could not process the file with any of the supported encodings.", None
except Exception as e:
return f"Error processing upload: {str(e)}", None
def process_cluster_upload(file_obj):
"""Process uploaded cluster CSV file"""
global cluster_df # μ „μ—­ λ³€μˆ˜μž„μ„ λͺ…μ‹œ
if file_obj is None:
return "No cluster file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.csv':
return "Please upload a CSV file.", None
# Try different encodings
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
# Update the global cluster_df
cluster_df = temp_df # μ „μ—­ λ³€μˆ˜ μ—…λ°μ΄νŠΈ
return f"Cluster file uploaded and processed successfully. {len(cluster_df)} records loaded with {encoding} encoding.", file_name
except UnicodeDecodeError:
continue
except Exception as e:
return f"Error processing cluster file with {encoding} encoding: {str(e)}", None
return "Could not process the cluster file with any of the supported encodings.", None
except Exception as e:
return f"Error processing cluster upload: {str(e)}", None
def process_shp_upload(file_obj):
"""Process uploaded shapefile ZIP"""
global regions_gdf, current_shp_path
if file_obj is None:
return "No file uploaded.", None
try:
file_path = file_obj.name
file_name = os.path.basename(file_path)
_, ext = os.path.splitext(file_path)
if ext.lower() != '.zip':
return "Please upload a ZIP file containing shapefile components.", None
# Create a temporary directory to extract files
with tempfile.TemporaryDirectory() as temp_dir:
# Extract ZIP contents
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Find .shp file in the extracted contents, excluding __MACOSX directory
shp_files = []
for root, _, files in os.walk(temp_dir):
# Skip __MACOSX directory
if '__MACOSX' in root:
continue
for file in files:
if file.endswith('.shp'):
shp_files.append(os.path.join(root, file))
if not shp_files:
return "No .shp file found in the ZIP archive.", None
# Use the first .shp file found
shp_path = shp_files[0]
try:
# Read the shapefile
regions_gdf = gpd.read_file(shp_path).to_crs("EPSG:4326")
# Create a permanent directory for the shapefiles if it doesn't exist
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
os.makedirs(permanent_dir, exist_ok=True)
# Generate a unique subdirectory name using timestamp
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
target_dir = os.path.join(permanent_dir, f'shapefile_{timestamp}')
os.makedirs(target_dir)
# Copy all related files to the permanent location
shp_base = os.path.splitext(shp_path)[0]
for ext in ['.shp', '.shx', '.dbf', '.prj', '.cpg', '.sbn', '.sbx']:
src_file = f"{shp_base}{ext}"
if os.path.exists(src_file):
shutil.copy2(src_file, target_dir)
# Update the current shapefile path to point to the permanent location
current_shp_path = os.path.join(target_dir, os.path.basename(shp_path))
return f"Shapefile uploaded and processed successfully. {len(regions_gdf)} features loaded.", file_name
except Exception as e:
return f"Error processing shapefile: {str(e)}", None
except Exception as e:
return f"Error processing ZIP upload: {str(e)}", None
def print_route_info(df, shp_file_path, sample_checkbox=False, path_checkbox=False):
"""Print route information to console based on checkbox settings"""
output_lines = []
for _, row in df.iterrows():
if sample_checkbox:
date_str = pd.to_datetime(row['created']).strftime('%Y-%m-%d %H:%M:%S')
output_lines.append(f"\nSample: {row['name']} ({date_str})")
output_lines.append(f" - Vehicle: {row['vehicle_type']}")
if path_checkbox:
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
output_lines.append(" - Path list:")
# Create GeoDataFrame for location lookup
coords = []
for loc in route:
if isinstance(loc, dict):
if 'latitude' in loc and 'longitude' in loc:
lat = float(loc['latitude']) / 360000.0
lng = float(loc['longitude']) / 360000.0
coords.append((lat, lng))
if coords:
gdf_sample = gpd.GeoDataFrame(
geometry=[Point(lon, lat) for lat, lon in coords],
crs="EPSG:4326"
)
# Load regions shapefile using provided path
regions_gdf = gpd.read_file(shp_file_path).to_crs("EPSG:4326")
# Join with regions
joined = gpd.sjoin(gdf_sample, regions_gdf, how="left", predicate="within")
# Get available columns for location info
location_columns = []
for col in ['NAME_1', 'NAME_2', 'NAME_3', 'TYPE_3']:
if col in joined.columns:
location_columns.append(col)
if location_columns:
# Create location string based on available columns
joined['location'] = joined[location_columns].astype(str).apply(
lambda x: "_".join(str(val) for val in x), axis=1
)
else:
# Fallback to coordinates if no matching columns found
joined['location'] = joined.geometry.apply(
lambda x: f"lat: {x.y:.6f}, lon: {x.x:.6f}"
)
for _, point in joined.iterrows():
output_lines.append(f" - {point['location']}")
output_lines.append("-" * 50)
return "\n".join(output_lines)
def get_colors(n, s=1.0, v=1.0):
colors = []
for i in range(n):
h = i / n
s = s # Maximum saturation
v = v # Maximum value/brightness
r, g, b = colorsys.hsv_to_rgb(h, s, v)
colors.append(f'#{int(r*255):02x}{int(g*255):02x}{int(b*255):02x}')
return colors
def cal_paths_folium(df, shp_file_path, n_samples=None, start_d=None, end_d=None, company=None,
sample_checkbox=False, path_checkbox=False):
log_messages = []
working_df = df.copy()
log_messages.append(f"Initial dataframe size: {len(working_df)} rows")
# Convert created column to datetime and remove timezone information
working_df['created'] = pd.to_datetime(working_df['created']).dt.tz_localize(None)
# Date filtering with better error handling and debugging
if start_d:
try:
start_d = pd.to_datetime(start_d).normalize()
log_messages.append(f"Filtering from date: {start_d}")
working_df = working_df[working_df['created'] >= start_d]
log_messages.append(f"After start date filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in start date filtering: {str(e)}")
if end_d:
try:
end_d = pd.to_datetime(end_d).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
log_messages.append(f"Filtering until date: {end_d}")
working_df = working_df[working_df['created'] <= end_d]
log_messages.append(f"After end date filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in end date filtering: {str(e)}")
# Company filtering with better error handling and debugging
if company and company.strip():
try:
log_messages.append(f"Filtering for company: {company}")
working_df = working_df[working_df['name'].str.contains(company, na=False)]
log_messages.append(f"After company filter: {len(working_df)} rows")
except Exception as e:
log_messages.append(f"Error in company filtering: {str(e)}")
# Sample n
if n_samples and len(working_df) > 0:
working_df = working_df.sample(n=min(n_samples, len(working_df)), random_state=42)
log_messages.append(f"After sampling: {len(working_df)} rows")
# Print column names and a few rows for debugging
log_messages.append(f"Columns in dataframe: {list(working_df.columns)}")
if len(working_df) > 0:
log_messages.append("First row sample:")
log_messages.append(str(working_df.iloc[0]))
# Generate colors
colors = get_colors(max(1, len(working_df)), s=0.5, v=1.0)
# Print route information
if sample_checkbox or path_checkbox:
console_output = print_route_info(working_df, shp_file_path, sample_checkbox, path_checkbox)
log_messages.append(console_output)
# Generate route data
routes = []
for i, (_, row) in enumerate(working_df.iterrows()):
# Convert route to dict/list if it's a string
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
# Handle different possible formats of coordinates
coords = []
for loc in route:
if isinstance(loc, dict):
# Handle 'latitude/longitude' format
if 'latitude' in loc and 'longitude' in loc:
lat = float(loc['latitude'])
lng = float(loc['longitude'])
# Scale coordinates if needed
if abs(lat) > 90 or abs(lng) > 180:
lat /= 360000.0
lng /= 360000.0
coords.append([lat, lng])
# Handle 'lat/lng' format
elif 'lat' in loc and 'lng' in loc:
lat = float(loc['lat'])
lng = float(loc['lng'])
# Scale coordinates if needed
if abs(lat) > 90 or abs(lng) > 180:
lat /= 360000.0
lng /= 360000.0
coords.append([lat, lng])
if coords:
routes.append({
'coordinates': coords,
'color': colors[i % len(colors)],
'company': str(row.get('name', 'Unknown')),
'created': row['created'].strftime('%Y-%m-%d %H:%M:%S')
})
print(f"Generated {len(routes)} valid routes")
log_messages.append(f"Generated {len(routes)} valid routes")
# routes와 ν•¨κ»˜ 둜그 λ©”μ‹œμ§€λ„ λ°˜ν™˜
return routes, "\n".join(log_messages)
def plot_paths_folium(routes, cluster_df=cluster_df, cluster_num_samples=None, cluster_company_search=None, cluster_date_start=None, cluster_date_end=None, map_location="Seoul", map_type="Satellite map", path_type="point+line", brightness=100):
"""Plot routes on a Folium map with customizable settings"""
# Map center coordinates based on location selection
centers = {
"Korea": (36.5, 127.5),
"Seoul": (37.5665, 126.9780),
"Busan": (35.1796, 129.0756)
}
zoom_levels = {
"Korea": 7,
"Seoul": 12,
"Busan": 12
}
center = centers.get(map_location, centers["Korea"])
zoom_start = zoom_levels.get(map_location, 7)
# Create map with appropriate type
if map_type == "Satellite map":
m = folium.Map(location=center, zoom_start=zoom_start,
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
attr='Esri')
else:
m = folium.Map(location=center, zoom_start=zoom_start)
path_fg = folium.FeatureGroup(name="Path").add_to(m)
# Add routes to the map
for route in routes:
if path_type in ["point", "point+line"] and len(route['coordinates']) > 0:
for i, coord in enumerate(route['coordinates']):
x_icon_html = f'''
<div style="
color: {route['color']};
font-weight: bold;
font-size: 10px;
transform: translate(2px, -3px);">
Γ—
</div>
'''
folium.DivIcon(
html=x_icon_html
).add_to(folium.Marker(
location=coord,
popup=f"{route.get('company', 'Unknown')} - Point {i+1}"
).add_to(path_fg))
if path_type in ["line", "point+line"]:
folium.PolyLine(
route['coordinates'],
color=route['color'],
weight=0.5,
dash_array='1, 1', # 점선 μŠ€νƒ€μΌ (μ„  길이, 간격)
popup=route.get('company', 'Unknown')
).add_to(path_fg)
cluster_df['t_pickup'] = pd.to_datetime(cluster_df['t_pickup'])
if cluster_date_start:
# Convert string to datetime without timezone
cluster_date_start = pd.to_datetime(cluster_date_start).normalize()
cluster_df = cluster_df[cluster_df['t_pickup'] >= cluster_date_start]
if cluster_date_end:
# Convert string to datetime without timezone
cluster_date_end = pd.to_datetime(cluster_date_end).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
cluster_df = cluster_df[cluster_df['t_pickup'] <= cluster_date_end]
if cluster_company_search:
cluster_df = cluster_df.query("company.str.contains(@cluster_company_search)")
if cluster_num_samples:
cluster_df = cluster_df.sample(n=min(cluster_num_samples, len(cluster_df)), random_state=42)
cluster_geo_fg = folium.FeatureGroup(name="Cluster Geo").add_to(m)
cluster_pmi_fg = folium.FeatureGroup(name="Cluster PMI", show=False).add_to(m)
cluster_geo_values = cluster_df['cluster_geo'].unique()
cluster_pmi_values = cluster_df['cluster_pmi'].unique()
# Create a mapping from cluster numbers to color indices
cluster_geo_mapping = {val: idx for idx, val in enumerate(sorted(cluster_geo_values))}
cluster_pmi_mapping = {val: idx for idx, val in enumerate(sorted(cluster_pmi_values))}
cluster_geo_colors = get_colors(len(cluster_geo_values))
cluster_pmi_colors = get_colors(len(cluster_pmi_values))
for _, row in cluster_df.iterrows():
# Geo cluster markers remain as circles
folium.CircleMarker(
location=(row['latitude'], row['longitude']),
popup=f"{row['company']} - Cluster {row['cluster_geo']}",
radius=3,
color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
fill=True,
fill_color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
).add_to(cluster_geo_fg)
# PMI cluster markers as stars
star_html = f'''
<div style="
color: {cluster_pmi_colors[cluster_pmi_mapping[row['cluster_pmi']]]};
font-size: 16px;
transform: translate(-1px, -7px);
text-shadow: 1px 1px 2px black;">
β˜…
</div>
'''
folium.DivIcon(
html=star_html
).add_to(folium.Marker(
location=(row['latitude'], row['longitude']),
popup=f"{row['company']} - Cluster {row['cluster_pmi']}",
).add_to(cluster_pmi_fg))
# Group points by cluster for both geo and pmi
geo_clusters = {}
pmi_clusters = {}
for _, row in cluster_df.iterrows():
# For geo clusters
geo_cluster = row['cluster_geo']
if geo_cluster not in geo_clusters:
geo_clusters[geo_cluster] = []
geo_clusters[geo_cluster].append((row['latitude'], row['longitude']))
# For pmi clusters
pmi_cluster = row['cluster_pmi']
if pmi_cluster not in pmi_clusters:
pmi_clusters[pmi_cluster] = []
pmi_clusters[pmi_cluster].append((row['latitude'], row['longitude']))
# Function to create a closed path by connecting nearest points
def create_closed_path(points):
if len(points) <= 1:
return points
# Start with the first point
path = [points[0]]
remaining_points = points[1:]
# Keep finding the closest point until none are left
while remaining_points:
current = path[-1]
# Find closest point to the current point
closest_idx = 0
closest_dist = float('inf')
for i, point in enumerate(remaining_points):
dist = ((current[0] - point[0])**2 + (current[1] - point[1])**2)**0.5
if dist < closest_dist:
closest_dist = dist
closest_idx = i
# Add the closest point to the path
path.append(remaining_points[closest_idx])
remaining_points.pop(closest_idx)
# Connect back to the first point to close the path
path.append(path[0])
return path
# Create polylines for geo clusters
for cluster_num, points in geo_clusters.items():
if len(points) >= 2: # Need at least 2 points to make a line
path = create_closed_path(points)
folium.PolyLine(
path,
color=cluster_geo_colors[cluster_geo_mapping[cluster_num]],
weight=2,
).add_to(cluster_geo_fg)
# Create polylines for pmi clusters
for cluster_num, points in pmi_clusters.items():
if len(points) >= 2: # Need at least 2 points to make a line
path = create_closed_path(points)
folium.PolyLine(
path,
color=cluster_pmi_colors[cluster_pmi_mapping[cluster_num]],
weight=2,
).add_to(cluster_pmi_fg)
# Create custom legend HTML with three scrollable sections
legend_html = '''
<div style="position: fixed;
top: 120px;
right: 10px;
width: 200px;
background-color: transparent;
z-index: 1000;">
<!-- Path Legend -->
<div style="margin-bottom: 5px;
background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Path Routes</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add path routes to the legend with larger X symbol
for route in routes:
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;
color: {route['color']};
font-weight: bold;
font-size: 20px;">
Γ—
</div>
<span style="word-break: break-all;">
{route.get('company', 'Unknown')}_{route.get('created', '')}
</span>
</div>
'''
# Get unique cluster values from already filtered cluster_df
visible_cluster_geo = sorted(cluster_df['cluster_geo'].unique())
visible_cluster_pmi = sorted(cluster_df['cluster_pmi'].unique())
# Add Cluster Geo section with larger circle symbol
legend_html += '''
</div>
</div>
<!-- Cluster Geo Legend -->
<div style="margin-bottom: 5px;
background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster Geo</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add only visible cluster geo information with larger circles
for cluster_value in visible_cluster_geo:
color = cluster_geo_colors[cluster_geo_mapping[cluster_value]]
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;">
<div style="width: 10px;
height: 10px;
background-color: {color};
border-radius: 50%;"></div>
</div>
<span style="word-break: break-all;">
Cluster {cluster_value}
</span>
</div>
'''
# Add Cluster PMI section with larger star symbol
legend_html += '''
</div>
</div>
<!-- Cluster PMI Legend -->
<div style="background-color: white;
border: 2px solid grey;
font-size: 10px;">
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster PMI</div>
<div style="height: 200px;
overflow-y: auto;
padding: 10px;">
'''
# Add only visible cluster PMI information with larger stars
for cluster_value in visible_cluster_pmi:
color = cluster_pmi_colors[cluster_pmi_mapping[cluster_value]]
legend_html += f'''
<div style="display: flex;
align-items: center;
margin: 5px 0;">
<div style="width: 20px;
height: 20px;
margin-right: 5px;
flex-shrink: 0;
display: flex;
align-items: center;
justify-content: center;
color: {color};
font-size: 18px;
text-shadow: 1px 1px 2px black;">
β˜…
</div>
<span style="word-break: break-all;">
Cluster {cluster_value}
</span>
</div>
'''
legend_html += '''
</div>
</div>
</div>
'''
folium.LayerControl(collapsed=False).add_to(m)
folium.plugins.Fullscreen(
position="bottomright",
title="Expand me",
title_cancel="Exit me",
force_separate_button=True,
).add_to(m)
# Add the legend to the map
m.get_root().html.add_child(folium.Element(legend_html))
# Add custom CSS for brightness control - only affecting the satellite tiles
custom_css = f"""
<style>
.leaflet-tile-pane img {{
filter: brightness({brightness}%);
}}
</style>
"""
m.get_root().header.add_child(folium.Element(custom_css))
return m._repr_html_()
def update_map(map_location, map_type, path_type, n_samples, company, date_start, date_end,
cluster_num_samples, cluster_company_search, cluster_date_start, cluster_date_end,
pick_all_date, sample_checkbox, path_checkbox, brightness_slider):
"""Update the map based on user selections"""
global df, cluster_df, regions_gdf, current_shp_path
log_messages = []
log_messages.append(f"Updating map with settings: Location={map_location}, Type={map_type}, Path={path_type}")
# Check if data is loaded
if df is None:
log_messages.append("Loading default data because df is None")
df_loaded, msg, _ = load_default_data()
if df_loaded is None:
return "No data available. Please upload a CSV file.", None
else:
log_messages.append(f"Using existing df with {len(df)} rows")
try:
# Process date filters with better error handling
start_d = None
end_d = None
if not pick_all_date:
if date_start and date_start.strip():
start_d = date_start
log_messages.append(f"Using start date: {start_d}")
if date_end and date_end.strip():
end_d = date_end
log_messages.append(f"Using end date: {end_d}")
else:
log_messages.append("Using all dates")
# Check if shapefile exists at current_shp_path
if not os.path.exists(current_shp_path):
log_messages.append(f"Warning: Shapefile not found at {current_shp_path}")
# Try to find the most recently uploaded shapefile
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
if os.path.exists(permanent_dir):
subdirs = [os.path.join(permanent_dir, d) for d in os.listdir(permanent_dir)
if os.path.isdir(os.path.join(permanent_dir, d))]
if subdirs:
# Get the most recent directory
latest_dir = max(subdirs, key=os.path.getctime)
# Find .shp file in that directory
shp_files = [f for f in os.listdir(latest_dir) if f.endswith('.shp')]
if shp_files:
current_shp_path = os.path.join(latest_dir, shp_files[0])
log_messages.append(f"Using most recent shapefile: {current_shp_path}")
# Calculate routes with full error reporting
try:
routes, cal_logs = cal_paths_folium(df, current_shp_path, n_samples=n_samples,
start_d=start_d, end_d=end_d,
company=company, sample_checkbox=sample_checkbox,
path_checkbox=path_checkbox)
log_messages.append(cal_logs)
except Exception as e:
log_messages.append(f"Error in route calculation: {str(e)}")
import traceback
log_messages.append(traceback.format_exc())
return "\n".join(log_messages), None
# Check if we have routes to display
if not routes:
log_messages.append("No routes to display after applying filters.")
empty_map = folium.Map(location=(36.5, 127.5), zoom_start=7)
return "\n".join(log_messages), empty_map._repr_html_()
# Create map
html_output = plot_paths_folium(routes, cluster_df, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, map_location, map_type, path_type, brightness_slider)
return "\n".join(log_messages), html_output
except Exception as e:
error_msg = f"Error updating map: {str(e)}"
log_messages.append(error_msg)
import traceback
log_messages.append(traceback.format_exc())
return "\n".join(log_messages), None
# Initialize data
def load_default_data():
"""Load the default dataset"""
global df, cluster_df, regions_gdf
default_file = 'data/20250122_Order_List_202411_12_CJW.csv'
default_cluster_file = 'data/path_clustering_2024.csv'
default_gadm_shp_file = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
messages = []
path_filename = ""
cluster_filename = ""
shp_filename = ""
# Try different encodings for the main file
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
df = pd.read_csv(default_file, engine='python', encoding=encoding)
path_filename = os.path.basename(default_file)
messages.append(f"Path file loaded successfully: {path_filename}")
break
except UnicodeDecodeError:
continue
except Exception as e:
messages.append(f"Error loading path file: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
# Try different encodings for the cluster file
for encoding in ['utf-8', 'cp949', 'euc-kr']:
try:
cluster_df = pd.read_csv(default_cluster_file, engine='python', encoding=encoding)
cluster_filename = os.path.basename(default_cluster_file)
messages.append(f"Cluster file loaded successfully: {cluster_filename}")
break
except UnicodeDecodeError:
continue
except Exception as e:
messages.append(f"Error loading cluster file: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
# Load shapefile
try:
regions_gdf = gpd.read_file(default_gadm_shp_file).to_crs("EPSG:4326")
shp_filename = os.path.basename(default_gadm_shp_file)
messages.append(f"Shapefile loaded successfully: {shp_filename}")
except Exception as e:
messages.append(f"Error loading shapefile: {str(e)}")
return None, None, None, "\n".join(messages), "", "", ""
return df, cluster_df, regions_gdf, "\n".join(messages), path_filename, cluster_filename, shp_filename
init_n_samples = 20
init_path_company_search = "λ°±λ…„ν™”νŽΈ"
init_path_date_start = "2024-12-01"
init_path_date_end = "2024-12-31"
init_cluster_num_samples = 200
init_cluster_date_start = "2025-02-24"
init_cluster_date_end = "2025-02-24"
init_brightness = 50
init_df, init_cluster_df, init_regions_gdf, init_msg, init_path_file, init_cluster_file, init_shp_file = load_default_data()
# Initial map
init_shp_file_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
init_routes, _ = cal_paths_folium(df, init_shp_file_path, n_samples=init_n_samples,
start_d=init_path_date_start, end_d=init_path_date_end,
company=init_path_company_search) if df is not None else ([], "")
init_html = plot_paths_folium(routes=init_routes, cluster_df=init_cluster_df, cluster_num_samples=init_cluster_num_samples, cluster_date_start=init_cluster_date_start, cluster_date_end=init_cluster_date_end, brightness=init_brightness) if init_routes else None
# Create Gradio interface
with gr.Blocks() as demo:
# Layout
with gr.Column():
# Map controls
with gr.Row():
map_location = gr.Radio(
["Korea", "Seoul", "Busan"],
label="Map Location Shortcuts",
value="Seoul"
)
map_type = gr.Radio(
["Normal map", "Satellite map"],
label="Map Type",
value="Satellite map"
)
path_type = gr.Radio(
["point", "line", "point+line"],
label="Path Type",
value="point+line"
)
brightness_slider = gr.Slider(
minimum=1,
maximum=300,
value=50,
step=1,
label="Map Brightness (%)"
)
# Map display
map_html = gr.HTML(init_html, elem_classes=["map-container"])
generate_btn = gr.Button("Generate Map")
# Filter controls
with gr.Column():
with gr.Row():
path_file_upload = gr.File(label="Upload Path File", height=89, file_count="single", scale=1)
path_current_file = gr.Textbox(label="Current Path File", value=init_path_file, scale=2)
with gr.Row():
cluster_file_upload = gr.File(label="Upload Cluster File", height=89, file_count="single", scale=1)
cluster_current_file = gr.Textbox(label="Current Cluster File", value=init_cluster_file, scale=2)
with gr.Row():
gadm_shp_upload = gr.File(label="Upload gadm .zip File", height=89, file_count="single", scale=1)
gadm_shp_current_file = gr.Textbox(label="Current gadm .zip File", value=init_shp_file, scale=2)
with gr.Row():
with gr.Row():
path_num_samples = gr.Number(label="Path Sample Count", precision=0, value=20, scale=1, minimum=1, maximum=200)
path_company_search = gr.Textbox(label="Path Company Search", value="λ°±λ…„ν™”νŽΈ", scale=2)
with gr.Row():
cluster_num_samples = gr.Number(label="Cluster Sample Count", precision=0, value=200, scale=1, minimum=1, maximum=200)
cluster_company_search = gr.Textbox(label="Cluster Company Search", scale=2)
# Date range
with gr.Row():
with gr.Row():
path_date_start = gr.Textbox(label="Path Start Date", placeholder="YYYY-MM-DD", value="2024-12-01")
path_date_end = gr.Textbox(label="Path End Date", placeholder="YYYY-MM-DD", value="2024-12-31")
with gr.Row():
cluster_date_start = gr.Textbox(label="Cluster Start Date", placeholder="YYYY-MM-DD", value="2025-02-24")
cluster_date_end = gr.Textbox(label="Cluster End Date", placeholder="YYYY-MM-DD", value="2025-02-24")
# Checkboxes
with gr.Row():
pick_all_date = gr.Checkbox(label="Select All Dates")
sample_checkbox = gr.Checkbox(label="Print Sample", value=True)
path_checkbox = gr.Checkbox(label="Print Path")
# Console
console = gr.Textbox(
label="Console",
lines=10,
max_lines=100,
interactive=False,
value=init_msg,
elem_classes=["console"]
)
# Style
gr.Markdown("""
<style>
.map-container {
margin: 10px;
width: calc(100% - 20px);
height: 600px;
}
.console {
background-color: black;
color: white;
font-family: monospace;
overflow-y: scroll;
}
</style>
""")
# Event handlers
path_file_upload.upload(
fn=process_upload,
inputs=[path_file_upload],
outputs=[console, path_current_file]
)
cluster_file_upload.upload(
fn=process_cluster_upload,
inputs=[cluster_file_upload],
outputs=[console, cluster_current_file]
)
gadm_shp_upload.upload(
fn=process_shp_upload,
inputs=[gadm_shp_upload],
outputs=[console, gadm_shp_current_file]
)
generate_btn.click(
fn=update_map,
inputs=[
map_location, map_type, path_type, path_num_samples, path_company_search,
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
brightness_slider
],
outputs=[console, map_html]
)
# Auto-update radio buttons
for control in [map_location, map_type, path_type, brightness_slider]:
control.change(
fn=update_map,
inputs=[
map_location, map_type, path_type, path_num_samples, path_company_search,
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
brightness_slider
],
outputs=[console, map_html]
)
# Launch the app
demo.launch(share=True)