Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class UstaCausalAttention(nn.Module): | |
def __init__(self, embedding_dim, output_dim, context_length, dropout_rate = 0): | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.q_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
self.k_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
self.v_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.register_buffer("mask", torch.tril(torch.ones(context_length, context_length))) | |
self.context_length = context_length | |
def forward(self, x): | |
number_of_tokens = x.shape[0] | |
# truncate the context length to the context length of the model | |
x = x[:self.context_length] | |
q = self.q_weights(x) | |
k = self.k_weights(x) | |
v = self.v_weights(x) | |
attention_scores = q @ k.T | |
attention_scores = attention_scores.masked_fill_( | |
self.mask.bool()[:number_of_tokens, :number_of_tokens] == 0, -torch.inf | |
) | |
attention_scores = torch.softmax(attention_scores / k.shape[-1] ** 0.5, dim=1) | |
attention_scores = self.dropout(attention_scores) | |
return attention_scores @ v | |