Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class UstaSelfAttention(nn.Module): | |
def __init__(self, embedding_dim, output_dim): | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.q_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
self.k_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
self.v_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
def forward(self, x): | |
q = self.q_weights(x) | |
k = self.k_weights(x) | |
v = self.v_weights(x) | |
attention_scores = q @ k.T | |
attention_weights = torch.softmax(attention_scores / k.shape[-1] ** 0.5, dim=1) | |
return attention_weights @ v | |