Spaces:
Sleeping
Sleeping
File size: 8,984 Bytes
2c771c2 035189e 2c771c2 0a333a5 2c771c2 921de0f 12cd8a8 2c771c2 adf44ff 2c771c2 9be1f67 2c771c2 9be1f67 2c771c2 12cd8a8 2c771c2 9be1f67 2c771c2 0a333a5 2c771c2 0a333a5 2c771c2 0a333a5 2c771c2 05e9128 bbecc8a 9be1f67 05e9128 c9bceab 9be1f67 05e9128 c9bceab 2c771c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
from openai import OpenAI
import streamlit as st
import openai
import os
import time
#from roles import *
import io
from pypdf import PdfReader
#from langchain_community.document_loaders import PyPDFLoader
import tempfile
from RAG import load_graph,text_splitter
import torch
from sentence_transformers import SentenceTransformer
import torch
import uuid
import re
import requests
from cloudhands import CloudHandsPayment
from database_center import db_transaction
device='cuda' if torch.cuda.is_available() else 'cpu'
import os
# Explicitly override cache paths (matches Dockerfile ENV)
os.environ["HF_HOME"] = "/app/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
encoder = SentenceTransformer(
"sentence-transformers/all-MiniLM-L6-v2",
cache_folder="/app/hf_cache"
).to(device)
global chat_messages
chat_messages=[]
outputs=[]
# Set your OpenAI API key here or use environment variable
payment_key=os.getenv('Payment_Key')
def complete_payment():
if st.session_state.token :
chPay=st.session_state.chPay
try:
result = chPay.charge(
charge=0.5,
event_name="Sample cloudhands charge",
)
st.success(f"You payment is succeeded")
st.session_state.transaction_id=result.transaction_id
st.session_state.db_transaction.add({
'id':str(uuid.uuid4()),
'app':'app_title',
'transaction-id':result.transaction_id,
'price':0.5
})
except Exception as e:
st.error(f"Charge failed: {e}")
else:
st.error('Please generate your Tokens.')
@st.dialog("Payment link")
def pay():
chPay = st.session_state.chPay
# Step 1: Show auth link only once
auth_url = chPay.get_authorization_url()
st.link_button("Authenticate", url=auth_url)
# Step 2: User pastes the code
code = st.text_input("Place your code")
if st.button("Exchange Code"):
try:
token = chPay.exchange_code_for_token(code)
st.session_state.token = token
st.success("Code exchanged successfully! Token stored.")
except Exception as e:
st.error(f"Failed: {e}")
def embed_document(file_text):
chunks=text_splitter.split_text(file_text)
#embedded=[]
embeddings=st.session_state.encoder.encode(chunks, convert_to_tensor=True, show_progress_bar=True)
embeddings = embeddings.cpu().numpy()
#embeddings=torch.concatenate(embedded).cpu().numpy()
#embeddings=embeddings.cpu().numpy()
#print(embedded)
return embeddings,chunks
def embed_sentence(text):
embeddings = st.session_state.encoder.encode([text], convert_to_tensor=True, show_progress_bar=True)
return embeddings.cpu().tolist()
def stream_response():
for char in extract_output(st.session_state.response).split(" "):
yield char+" "
time.sleep(0.1) # Simulate a delay
def stream_thoughts():
for char in extract_thinking(st.session_state.response).split(" "):
yield char+" "
time.sleep(0.1) # Simulate a delay
def get_text(uploaded_file):
# Save uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_path = tmp_file.name
loader = PyPDFLoader(tmp_path)
pages = loader.load()
text = "\n".join([page.page_content for page in pages])
return text
def respond_chat(text):
url="https://8000-01k3gce7dwxsk16d7dd40n75xb.cloudspaces.litng.ai/predict"
payload = { "user_prompt":text}
headers = {"Content-Type": "application/json"}
response = requests.post(url, data=payload)
if response.status_code == 200:
complete_payment()
if st.session_state.transaction_id:
return response.json()['output'][0]
def extract_thinking(text: str) -> str:
"""
Extracts content inside <thinking>...</thinking> tags.
Returns the first match or an empty string if not found.
"""
match = re.search(r"<thinking>(.*?)</thinking>", text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else ""
def extract_output(text: str) -> str:
"""
Extracts content inside <output>...</output> tags.
Returns the first match or an empty string if not found.
"""
match = re.search(r"<output>(.*?)</output>", text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else ""
# Dropdown for model selection
if 'doc_flag' not in st.session_state:
st.session_state.doc_flag = False
if 'flag' not in st.session_state:
st.session_state.flag = False
if 'encoder' not in st.session_state:
st.session_state.encoder = encoder
if 'file_text' not in st.session_state:
st.session_state.file_text = ""
if "chPay" not in st.session_state:
st.session_state.chPay = CloudHandsPayment(
author_key=payment_key
)
if "token" not in st.session_state:
st.session_state.token = None
if 'db_transaction' not in st.session_state:
st.session_state.db_transaction = db_transaction
if 'embeddings' not in st.session_state:
st.session_state.embeddings = None
if 'chunks' not in st.session_state:
st.session_state.chunks = None
if 'response' not in st.session_state:
st.session_state.response=''
# Sidebar document upload
st.sidebar.title("Uploading your document π")
uploaded_file = st.sidebar.file_uploader(
"Upload your document π",
type=["pdf"],
label_visibility="collapsed"
)
upload_button=st.sidebar.button("Upload Document")
uploaded_file = st.sidebar.file_uploader(
"Upload your PDF",
type=["pdf"],
key="pdf_uploader",
)
def extract_pdf_text_from_bytes(file_bytes: bytes) -> str:
reader = PdfReader(io.BytesIO(file_bytes))
pages_text = []
for p in reader.pages:
txt = p.extract_text() or ""
pages_text.append(txt)
return "\n".join(pages_text)
if uploaded_file is not None:
with st.spinner("Reading & embedding your PDF..."):
# Important: read bytes once on this rerun
file_bytes = uploaded_file.read()
# (Optional) if you ever re-use uploaded_file later, do: uploaded_file.seek(0)
# Extract text purely in-memory (no /tmp files, no PyPDFLoader)
file_text = extract_pdf_text_from_bytes(file_bytes)
# Persist to session state
st.session_state.file_text = file_text
# Build embeddings (uses your existing text_splitter + encoder)
chunks = text_splitter.split_text(file_text)
embeddings = st.session_state.encoder.encode(
chunks, convert_to_tensor=True, show_progress_bar=True
).cpu().numpy()
st.session_state.embeddings = embeddings
st.session_state.chunks = chunks
st.session_state.doc_flag = True
st.success(f"Loaded: {uploaded_file.name} β {len(st.session_state.chunks)} chunks")
st.sidebar.write("Before making the your faviorate charecter sound, authenicate your code")
Authenication=st.sidebar.button('Authenicate')
if Authenication:
pay()
#subject=st.pills('Select your subject',list(roles.keys()),selection_mode='single')
st.title("Plaito")
st.write("Chat with our reasoning model and ask your questions. The model show you it's chain of thoughts and final answer.")
text=st.text_area("Ask your question:", height=100)
document_button=st.pills("Ask based on Documents", ['search'], selection_mode="single")
generate_button=st.button("Generate Response")
if generate_button:
with st.spinner("Generating code..."):
try:
if document_button:
graph=load_graph(st.session_state.embeddings,st.session_state.chunks)
graph=graph.compile()
initial_state = {
"embedded_query":embed_sentence(text),
"knowledge": [],
"summary": "",
"final_response": None,}
final_state = graph.invoke(initial_state)
updated_text = f"""
Then respond to the client. Also follow the retrived information in the ##Summary section.
## Instructions:
{text}
## Summary:
{final_state['summary']}
"""
if st.session_state.db_transaction:
response=respond_chat(updated_text)
st.session_state.response=response
else:
if st.session_state.db_transaction:
response=respond_chat(text)
st.session_state.response=response
except Exception as e:
st.error(f"Error during code generation: {e}")
col1,col2=st.columns([2,1])
with col2:
st.write("### Thought Process")
st.write_stream(stream_thoughts())
with col1:
st.write("### Response")
st.write_stream(stream_response())
|