Spaces:
Sleeping
Sleeping
#from texts import * | |
from langgraph.graph import StateGraph | |
from langchain_core.runnables import RunnableLambda | |
from openai import OpenAI | |
import os | |
import openai | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import torch | |
from typing import TypedDict | |
import requests | |
import json | |
from typing import List, Dict, Any | |
from sklearn.cluster import KMeans | |
import numpy as np | |
file_text='' | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1024, | |
chunk_overlap=256, | |
length_function=len | |
) | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
client=OpenAI() | |
# def get_embedding(text, model="text-embedding-3-small"): | |
# # response = openai.embeddings.create( | |
# # input=[text], | |
# # model=model | |
# # ) | |
# embeddings = encoder.encode([text], convert_to_tensor=True, show_progress_bar=True) | |
# embeddings = embeddings.cpu().numpy() | |
# return embeddings | |
# text=chuncked_text+Focusing_text+planning_text+Focusing_text2+Evoking_text | |
# chunks=text_splitter.split_text(text) | |
# embeddings=[get_embedding(chunk) for chunk in chunks] | |
# embedds=np.array(embeddings) | |
# kmeans=KMeans(n_clusters=3,max_iter=1000) | |
# kmeans.fit(embedds) | |
# def embed_document(state,file_text): | |
# chunks=text_splitter.split_text(file_text) | |
# embeddings=encoder.encode(chunks, convert_to_tensor=True, show_progress_bar=False) | |
# embeddings=embeddings.cpu().numpy() | |
# print(len(embeddings)) | |
# return {'single_query':state['single_query'],'embeddings':embeddings,'chunks':chunks} | |
def get_knowledge(state,embeddings,chunks,method='cosine'): | |
query_embedding = state['embedded_query'] | |
if method=='cosine': | |
# Convert to tensor | |
query_tensor = torch.tensor(query_embedding, dtype=torch.float32).to('cpu') # shape: [embedding_dim] | |
#embeddings_tensor = torch.tensor(embeddings, dtype=torch.float32).to('cuda') # shape: [num_chunks, embedding_dim] | |
# Normalize | |
embeddings_tensor=torch.from_numpy(embeddings).to('cpu') | |
query_tensor = query_tensor / query_tensor.norm() | |
embeddings_tensor = embeddings_tensor / embeddings_tensor.norm(dim=1, keepdim=True) | |
# Compute cosine similarity | |
similarities = torch.matmul(query_tensor, embeddings_tensor.T) | |
print(similarities.shape) | |
top_k = 5 | |
top_k_indices = torch.topk(similarities, k=top_k).indices | |
print(top_k_indices) | |
return {'embedded_query':state['embedded_query'],'knowledge':[chunks[i] for i in top_k_indices.squeeze(0)]} | |
# elif method=='Kmeans': | |
# query_emb = np.array(get_embedding(state['single_query'])) | |
# # Predict the closest cluster | |
# cluster_idx = kmeans.predict([query_emb])[0] | |
# # Find indices of documents in this cluster | |
# cluster_doc_indices = np.where(kmeans.labels_ == cluster_idx)[0] | |
# # Compute L2 (Euclidean) distance within the cluster | |
# cluster_embs = np.array(embeddings)[cluster_doc_indices] | |
# distances = np.linalg.norm(cluster_embs - query_emb, axis=1) | |
# top_k=5 | |
# # Get top_k most similar documents (smallest distances) | |
# top_indices = distances.argsort()[:top_k] | |
# return {'single_query':state['single_query'],'knowledge':[chunks[cluster_doc_indices[i]] for i in top_indices]} | |
def summerise_knowledge(state): | |
prompt=""" | |
[system] | |
## Instructions: | |
You are skillfull text analysist. Summerise the extracted information from uploaded file by the user. Make your summary as concice as possible. | |
### Inputs: | |
Extracted Knowledge: | |
{} | |
### Output: | |
""" | |
text="" | |
chunks=state['knowledge'] | |
for chunk in chunks: | |
text+=chunk | |
response=client.chat.completions.create( | |
model="gpt-5-mini", | |
messages =[{'role':'user','content':prompt.format(text)}]) | |
# url = "https://11434-dep-01k080agynagw33vkkb9xfxpkb-d.cloudspaces.litng.ai/api/chat" | |
# s = requests.Session() | |
# s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"}) | |
# response = s.post(url, json={ | |
# "model": "hf.co/alibidaran/LLAMA3-instructive_reasoning-GGUF:Q8_0", | |
# "messages":[{'role':'user','content':prompt.format(text)}] , | |
# "options": { | |
# "temperature": 0.7, | |
# "top_p": 0.95 # Set your desired top_p here | |
# } | |
# }) | |
# full_response = "" | |
# for line in response.iter_lines(): | |
# if line: | |
# data = json.loads(line.decode("utf-8")) | |
# message = data.get("message", {}) | |
# content = message.get("content", "") | |
# full_response += content | |
# if data.get("done", Falsurl = "https://800-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict"): | |
# break | |
print(response.choices[0].message) | |
return {'embedded_query':state['embedded_query'],'summary':response.choices[0].message.content} | |
#return {'single_query':state['single_query'],'summary':full_response} | |
# def making_instructions(state): | |
# prompt=""" | |
# [system] | |
# ## Instructions: | |
# You are skill full certificated psychologist. Create an instruction for the practitioner to help them how to behaive and respond to the client effectively. | |
# ## Input: | |
# [summary] | |
# {} | |
# ### Output: | |
# """ | |
# response=client.chat.completions.create( | |
# model="gpt-4o-mini", | |
# # api_base="https://litellm.llemma.net/", | |
# # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA", | |
# messages =[{'role':'user','content':prompt.format(state['summary'])}], | |
# temperature=0.7, | |
# top_p=0.95, | |
# max_tokens=800) | |
# return {'query':state['query'],'instruction':response.choices[0].message} | |
def respond(state): | |
system_prompt=""" | |
You are a reasonable expert who thinks and answer the users question. | |
Before respond first think and create a chain of thoughts in your mind. | |
Then respond to the client. Also follow the retrived information in the ##Summary section. | |
Your chain of thought and reflection must be in <thinking>..</thinking> format and your respond | |
should be in the <output>..</output> format. | |
""" | |
user_prompt=""" | |
## Instructions: | |
{} | |
## Summary: | |
{} | |
""" | |
url="https://8000-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict" | |
payload = { "user_prompt":user_prompt.format(state['single_query'],state['summary'])} | |
response = requests.post(url, data=payload) | |
return {'final_response':response.json()['output'][0]} | |
# messages=[ | |
# {'role':'system', 'content':system_prompt}, | |
# ] | |
# messages+=[{'role':'user','content':user_prompt.format(state['single_query'],state['summary'])}] | |
# url = "https://11434-dep-01jx2gzqqspsvcvtgmabz6jkkz-d.cloudspaces.litng.ai/api/chat" | |
# s = requests.Session() | |
# s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"}) | |
# response = s.post(url, json={ | |
# "model": "hf.co/alibidaran/LLAMA3-intructive_reasoning_GGUF:Q8_0", | |
# "messages": messages, | |
# "options": { | |
# "temperature": 0.7 # Set your desired temperature here | |
# } | |
# }) | |
# # Collect the assistant's output | |
# full_response = "" | |
# for line in response.iter_lines(): | |
# if line: | |
# data = json.loads(line.decode("utf-8")) | |
# message = data.get("message", {}) | |
# content = message.get("content", "") | |
# full_response += content | |
# if data.get("done", False): | |
# break | |
# response=client.chat.completions.create( | |
# model="gpt-4o-mini", | |
# # api_base="https://litellm.llemma.net/", | |
# # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA", | |
# messages =messages, | |
# temperature=0.7, | |
# top_p=0.95,) | |
#return {'final_response':full_response} | |
def end_node(state): | |
#print("Response:\n", state["final_response"]) | |
return {'knowledge':state["summary"]} | |
class MyState(TypedDict): | |
#query: List[Dict[str, Any]] | |
embedded_query:list | |
knowledge: list | |
summary: str | |
def load_graph(embeddings,chunks): | |
graph_builder = StateGraph(state_schema=MyState) | |
# Add nodes | |
graph_builder.set_entry_point('get_knowledge') | |
graph_builder.add_node("get_knowledge", RunnableLambda(lambda state: get_knowledge(state,embeddings,chunks,method='cosine'))) | |
graph_builder.add_node("summarise", RunnableLambda(summerise_knowledge)) | |
#graph_builder.add_node('instructuons', RunnableLambda(making_instructions)) | |
#graph_builder.add_node("respond", RunnableLambda(respond)) | |
graph_builder.add_node("end", RunnableLambda(end_node)) | |
# Add edges | |
graph_builder.add_edge("get_knowledge", "summarise") | |
#graph_builder.add_edge("summarise", "respond") | |
#graph_builder.add_edge("instructuons",'respond') | |
graph_builder.add_edge("summarise", "end") | |
# Compile the graph | |
# graph = graph_builder.compile() | |
return graph_builder |