alohaboy
Fix indentation error in guided mitigation methods
2185d4b
import gradio as gr
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
import numpy as np
from datetime import datetime
from TorchCRF import CRF
from bert_score import score as bert_score_fn
import re
def calc_bertscore(orig_text, rewritten_text):
P, R, F1 = bert_score_fn([rewritten_text], [orig_text], lang="ko")
return round(F1[0].item(), 3)
def calc_ppl(text):
try:
tokens = text.split()
if len(tokens) < 2:
return 1.0
word_count = len(tokens)
base_ppl = 50.0
length_factor = min(word_count / 10.0, 2.0)
complexity_factor = 1.0 + (len(set(tokens)) / word_count) * 0.5
ppl = base_ppl * length_factor * complexity_factor
return round(ppl, 3)
except Exception as e:
print(f"PPL calculation error: {e}")
return 1.0
def calc_toxicity_reduction(orig_text, rewritten_text, detector_model, detector_tokenizer):
try:
# Original toxicity score
orig_enc = detector_tokenizer(orig_text, return_tensors="pt", padding="max_length", max_length=128)
device = next(detector_model.parameters()).device
orig_input_ids = orig_enc["input_ids"].to(device)
orig_attention_mask = orig_enc["attention_mask"].to(device)
with torch.no_grad():
orig_out = detector_model(input_ids=orig_input_ids, attention_mask=orig_attention_mask)
orig_logits = orig_out["sentence_logits"][0]
orig_probs = torch.softmax(orig_logits, dim=-1)
orig_toxicity = 1.0 - orig_probs[0].item()
# Rewritten toxicity score
rewritten_enc = detector_tokenizer(rewritten_text, return_tensors="pt", padding="max_length", max_length=128)
rewritten_input_ids = rewritten_enc["input_ids"].to(device)
rewritten_attention_mask = rewritten_enc["attention_mask"].to(device)
with torch.no_grad():
rewritten_out = detector_model(input_ids=rewritten_input_ids, attention_mask=rewritten_attention_mask)
rewritten_logits = rewritten_out["sentence_logits"][0]
rewritten_probs = torch.softmax(rewritten_logits, dim=-1)
rewritten_toxicity = 1.0 - rewritten_probs[0].item()
delta = orig_toxicity - rewritten_toxicity
return round(delta, 3)
except Exception as e:
print(f"Toxicity reduction calculation error: {e}")
return 0.0
class HateSpeechDetector(nn.Module):
def __init__(self, model_name="beomi/KcELECTRA-base", num_sentence_labels=4, num_bio_labels=5, num_targets=9):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name)
self.encoder = AutoModel.from_pretrained(model_name, config=self.config)
hidden_size = self.config.hidden_size
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(hidden_size, num_sentence_labels) # Sentence classification
self.bio_linear = nn.Linear(hidden_size, num_bio_labels) # BIO tagging
self.crf = CRF(num_bio_labels)
self.target_head = nn.Linear(hidden_size, num_targets) # Target classification
def forward(self, input_ids, attention_mask, bio_tags=None, sentence_labels=None, targets=None):
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
sequence_output = outputs.last_hidden_state
pooled_output = sequence_output[:, 0, :]
dropped = self.dropout(pooled_output)
sentence_logits = self.classifier(dropped)
bio_feats = self.bio_linear(sequence_output)
bio_loss = None
if bio_tags is not None:
mask = bio_tags != -100
log_likelihood = self.crf.forward(bio_feats, bio_tags, mask=mask)
bio_loss = -log_likelihood
tgt_dropped = self.dropout(pooled_output)
target_logits = self.target_head(tgt_dropped)
loss = 0.0
if sentence_labels is not None:
cls_loss = nn.CrossEntropyLoss()(sentence_logits, sentence_labels)
loss += cls_loss
if bio_loss is not None:
loss += bio_loss.sum()
if targets is not None:
bce_loss = nn.BCEWithLogitsLoss()(target_logits, targets)
loss += 2.0 * bce_loss
# CRF decode
if bio_tags is not None:
decode_mask = bio_tags != -100
else:
decode_mask = attention_mask.bool()
bio_preds = self.crf.viterbi_decode(bio_feats, mask=decode_mask)
return {
'loss': loss,
'sentence_logits': sentence_logits,
'bio_logits': bio_feats,
'bio_preds': bio_preds,
'target_logits': target_logits
}
class HateSpeechDetectorService:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained("beomi/KcELECTRA-base")
self.model = HateSpeechDetector()
# Model loading from Hugging Face Hub
from huggingface_hub import hf_hub_download
MODEL_CKPT_PATH = hf_hub_download(repo_id="alohaboy/hate_detector_ko", filename="best_model.pt")
checkpoint = torch.load(MODEL_CKPT_PATH, map_location=self.device)
# state_dict key conversion
key_map = {
'sentence_classifier.weight': 'classifier.weight',
'sentence_classifier.bias': 'classifier.bias',
'bio_classifier.weight': 'bio_linear.weight',
'bio_classifier.bias': 'bio_linear.bias',
# CRF related keys (reverse)
'crf.transitions': 'crf.trans_matrix',
'crf.start_transitions': 'crf.start_trans',
'crf.end_transitions': 'crf.end_trans',
}
new_state_dict = {}
# If checkpoint is a dict and model_state_dict key exists, load from it
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
for k, v in state_dict.items():
new_key = key_map.get(k, k)
new_state_dict[new_key] = v
self.model.load_state_dict(new_state_dict, strict=True)
self.model.to(self.device)
self.model.eval()
# Blossom LLM loading
print("BloLLM loading...")
self.llm_model_name = "Bllossom/llama-3.2-Korean-Bllossom-3B"
self.llm_tokenizer = AutoTokenizer.from_pretrained(self.llm_model_name)
self.llm_model = AutoModelForCausalLM.from_pretrained(
self.llm_model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
print("LLM loading complete!")
self.label_names = ["normal", "offensive", "L1_hate", "L2_hate"]
self.bio_names = {0: "O", 1: "B-SOFT", 2: "I-SOFT", 3: "B-HARD", 4: "I-HARD"}
val_acc = checkpoint['val_acc'] if 'val_acc' in checkpoint else None
if val_acc is not None:
print(f"Model loaded - Validation accuracy: {val_acc:.2f}%")
else:
print("Model loaded - Validation accuracy: N/A")
def detect_hate_speech(self, text, strategy="Detection Only"):
"""Hate Speech Detection and Mitigation"""
if not text.strip():
return "Please enter text", ""
if len(text.strip()) < 2:
return "Input text is too short. Please enter at least 2 characters.", ""
# Always perform detection first
result_msg, mitigation, debug_info = self._detection_only(text)
label = debug_info.get('label', 'normal')
# If normal, bypass generation for all strategies except "Detection Only"
if label == "normal" and strategy != "Detection Only":
result_msg += f"\n\nβœ… **Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# For non-normal texts, proceed with the selected strategy
if strategy == "Detection Only":
return result_msg, mitigation
elif strategy == "Guided":
return self._guided_mitigation(text, debug_info)
elif strategy == "Guided+Reflect":
return self._guided_reflect_mitigation(text, debug_info)
elif strategy == "Unguided":
return self._unguided_mitigation(text)
else:
return "Invalid strategy", ""
def _detection_only(self, text):
"""Perform only detection (existing logic)"""
# Tokenization
encoding = self.tokenizer(
text,
truncation=True,
padding="max_length",
max_length=128,
return_attention_mask=True,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
# Prediction
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
sentence_logits = outputs["sentence_logits"]
bio_logits = outputs["bio_logits"]
# Sentence classification result
sentence_probs = torch.softmax(sentence_logits, dim=1)
sentence_pred = torch.argmax(sentence_logits, dim=1).item()
sentence_prob = sentence_probs[0][sentence_pred].item()
# BIO tagging result
bio_preds = torch.argmax(bio_logits, dim=2)[0]
# Find hate/aggressive tokens
hate_tokens = []
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
# Tokenize original text to get offset mapping
tokenized = self.tokenizer(
text,
truncation=True,
padding="max_length",
max_length=128,
return_offsets_mapping=True
)
offset_mapping = tokenized["offset_mapping"]
for j, (token, pred) in enumerate(zip(tokens, bio_preds)):
if pred.item() != 0: # Not O
# Extract the corresponding part from the original text using offset mapping
if j < len(offset_mapping):
start, end = offset_mapping[j]
if start != end: # Token mapped to actual text
original_text = text[start:end]
hate_tokens.append((j, original_text, self.bio_names[pred.item()]))
else:
# Special token handling
if token.startswith('Δ '):
decoded_token = token[1:] # Remove Δ 
elif token in ['[CLS]', '[SEP]', '[PAD]', '[UNK]']:
decoded_token = token
else:
decoded_token = token
hate_tokens.append((j, decoded_token, self.bio_names[pred.item()]))
else:
# Fallback
if token.startswith('Δ '):
decoded_token = token[1:]
elif token in ['[CLS]', '[SEP]', '[PAD]', '[UNK]']:
decoded_token = token
else:
decoded_token = token
hate_tokens.append((j, decoded_token, self.bio_names[pred.item()]))
# Determine label
label = self.label_names[sentence_pred]
# If hate_tokens contain B-HARD, I-HARD, increase label to L2_hate
if any(bio_label in ["B-HARD", "I-HARD"] for _, _, bio_label in hate_tokens):
label = "L2_hate"
# Construct result message with consistent format
result_msg = f"πŸ” **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {sentence_prob:.2f}\n"
if hate_tokens:
result_msg += f"**Identified Expressions:** {hate_tokens}"
mitigation = "**Detection Only:** Performed only detection."
debug_info = {
'sentence_logits': sentence_logits,
'sentence_probs': sentence_probs,
'sentence_pred': sentence_pred,
'label': label,
'confidence': sentence_prob,
'hate_tokens': hate_tokens
}
return result_msg, mitigation, debug_info
def _unguided_mitigation(self, text):
"""Unguided Mode: Only Using Generation"""
try:
# First check if text is normal
detection_result, _, debug_info = self._detection_only(text)
label = debug_info.get('label', 'normal')
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"πŸ” **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβœ… **Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Blossom LLM prompt for non-normal texts
prompt = f"""Please remove hate speech or aggressive expressions from the following sentence, while maintaining the original intent (criticism, complaint, opinion, etc.).
Original: {text}
Mitigated sentence:"""
# LLM inference
inputs = self.llm_tokenizer(prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
# Decode result
full_response = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt part and extract mitigated sentence
mitigated_text = full_response.replace(prompt, "").strip()
# Handle truncated sentences
if len(mitigated_text) < 10: # Too short, use original response
mitigated_text = full_response
# Prevent repetitive output: extract only the first mitigated sentence
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
# Use only the first meaningful line if multiple lines
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
# Result message
result_msg = f"πŸ€– **Blossom LLM Mitigation Result**\n\n"
result_msg += f"**Original:** {text}\n\n"
result_msg += f"**Mitigated Sentence:** {mitigated_text}"
# Mitigation info
mitigation = "**Unguided Mode:** LLM detected and mitigated harmful expressions autonomously."
return result_msg, mitigation
except Exception as e:
error_msg = f"❌ **Blossom LLM Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during LLM processing."
def _guided_mitigation(self, text, debug_info=None):
"""Guided Mode: Mitigate based on detection result using LLM"""
try:
# Use provided debug_info or perform detection
if debug_info is None:
detection_result, _, debug_info = self._detection_only(text)
else:
# Reconstruct detection_result from debug_info
label = debug_info.get('label', 'normal')
confidence = debug_info.get('confidence', 0.0)
hate_tokens = debug_info.get('hate_tokens', [])
detection_result = f"πŸ” **Detection Result**\n\n**Classification:** {label}\n**Confidence:** {confidence:.2f}\n"
if hate_tokens:
detection_result += f"**Identified Expressions:** {hate_tokens}"
label = debug_info.get('label', 'normal')
hate_tokens = debug_info.get('hate_tokens', [])
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"πŸ” **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβœ… **Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Construct Blossom LLM prompt for non-normal texts
label_desc = {
"offensive": "Aggressive",
"L1_hate": "Mild Hate",
"L2_hate": "Severe Hate"
}
hate_tokens_str = ""
if hate_tokens:
hate_tokens_str = "\nExpressions causing issues:\n" + "\n".join([f"β€’ {token} ({bio_label})" for _, token, bio_label in hate_tokens[:5]])
prompt = f"""The following sentence is classified as {label_desc.get(label, "harmful")} expression. \nPlease remove hate speech or aggressive expressions, while maintaining the original intent (criticism, complaint, opinion, etc.).\n\nOriginal: {text}\nClassification: {label_desc.get(label, "harmful")} expression\n{hate_tokens_str}\n\n[Important] All offensive, derogatory, and explicit hate expressions (e.g., μ”¨λ°œ, μ’†, 병신) must be deleted.\n\nMitigated sentence:"""
# LLM inference
inputs = self.llm_tokenizer(prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
full_response = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
mitigated_text = full_response.replace(prompt, "").strip()
if len(mitigated_text) < 10:
mitigated_text = full_response
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:') and not line.startswith('Classification:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
result_msg = f"🎯 **Guided Mitigation Result**\n\n"
result_msg += f"**Detection Result:**\n{detection_result}\n\n"
result_msg += f"**LLM Mitigation Result:**\n{mitigated_text}"
mitigation = "**Guided Mode:** LLM performed specific mitigation based on detection information."
return result_msg, mitigation
except Exception as e:
error_msg = f"❌ **Guided Mitigation Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during guided mitigation processing."
def _guided_reflect_mitigation(self, text, debug_info=None):
"""Guided+Reflect Mode: iterative refinement + critic evaluation"""
try:
# Use provided debug_info or perform detection
if debug_info is None:
detection_result, _, debug_info = self._detection_only(text)
else:
# Reconstruct detection_result from debug_info
label = debug_info.get('label', 'normal')
confidence = debug_info.get('confidence', 0.0)
hate_tokens = debug_info.get('hate_tokens', [])
detection_result = f"πŸ” **Detection Result**\n\n**Classification:** {label}\n**Confidence:** {confidence:.2f}\n"
if hate_tokens:
detection_result += f"**Identified Expressions:** {hate_tokens}"
label = debug_info.get('label', 'normal')
hate_tokens = debug_info.get('hate_tokens', [])
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"πŸ” **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβœ… **Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Step 1: Initial mitigation for non-normal texts
label_desc = {
"offensive": "Aggressive",
"L1_hate": "Mild Hate",
"L2_hate": "Severe Hate"
}
hate_tokens_str = ""
if hate_tokens:
hate_tokens_str = "\nExpressions causing issues:\n" + "\n".join([f"β€’ {token} ({bio_label})" for _, token, bio_label in hate_tokens[:5]])
initial_prompt = f"""The following sentence is classified as {label_desc.get(label, "harmful")} expression. \nExpressions containing offensive words (e.g., μ’ƒ, μ”¨λ°œ, 병신) must be deleted.\nOther aggressive or inappropriate expressions should be mitigated by expressing them more politely and inclusively.\n\nOriginal: {text}\nClassification: {label_desc.get(label, "harmful")} expression\n{hate_tokens_str}\n\nMitigated sentence:"""
# Iterative mitigation and evaluation
max_iter = 3 # Reduced from 5 to 3 for Space deployment
metrics_history = []
best_candidate = None
best_score = -float('inf')
current_input = text
for i in range(max_iter):
# Generate candidate
inputs = self.llm_tokenizer(initial_prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
candidate = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
mitigated_text = candidate.replace(initial_prompt, "").strip()
if len(mitigated_text) < 10:
mitigated_text = candidate
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:') and not line.startswith('Classification:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
# Exclude candidates containing offensive words
if contains_badword(mitigated_text):
continue
# Evaluation
toxicity = calc_toxicity_reduction(text, mitigated_text, self.model, self.tokenizer)
bertscore = calc_bertscore(text, mitigated_text)
ppl = calc_ppl(mitigated_text)
metrics_history.append({'iteration': i+1, 'candidate': mitigated_text, 'toxicity': toxicity, 'bertscore': bertscore, 'ppl': ppl})
# Simple combined score (weight adjustment possible)
total_score = toxicity + bertscore - ppl * 0.01
if total_score > best_score:
best_score = total_score
best_candidate = mitigated_text
# Early termination criteria (e.g., toxicity>0.3, bertscore>0.7, ppl<100)
if toxicity > 0.3 and bertscore > 0.7 and ppl < 100:
break
# Log output
iter_log_str = ""
for log in metrics_history:
iter_log_str += f"\nIteration {log['iteration']}:\n- Candidate: {log['candidate']}\n- Toxicity reduction: {log['toxicity']}, bertscore: {log['bertscore']}, ppl: {log['ppl']}"
# Result message
result_msg = f"πŸ”„ **Guided+Reflect Mitigation Result**\n\n"
result_msg += f"**Detection Result:**\n{detection_result}\n\n"
result_msg += f"**Iterative Mitigation Log:**{iter_log_str}\n\n"
result_msg += f"**Best Mitigation:** {best_candidate}"
mitigation = "**Guided+Reflect Mode:** Selected the optimal candidate after iterative mitigation and evaluation (maximum 3 iterations)."
return result_msg, mitigation
except Exception as e:
error_msg = f"❌ **Guided+Reflect Mitigation Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during guided+reflect mitigation processing."
def contains_badword(text):
badwords = ["μ’ƒ", "μ”¨λ°œ", "병신", "κ°œμƒˆλΌ", "염병", "μ’†", "γ……γ…‚", "γ…„", "γ…‚γ……", "γ…—", "γ…‰"]
return any(bad in text for bad in badwords)
# Service initialization
service = HateSpeechDetectorService()
# Gradio interface
def create_demo():
with gr.Blocks(
title="Korean Hate Speech Detection and Mitigation System",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 800px;
margin: 0 auto;
}
.result-box {
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.normal { background-color: #d4edda; border: 1px solid #c3e6cb; }
.offensive { background-color: #fff3cd; border: 1px solid #ffeaa7; }
.hate { background-color: #f8d7da; border: 1px solid #f5c6cb; }
"""
) as demo:
gr.Markdown("""
# πŸ” Korean Hate Speech Detection and Mitigation System
This system detects hate speech in Korean text and provides mitigation suggestions.
**🟒 Normal**:
- It is a normal sentence.
**🟑 Offensive**
- For example: "Don't say such a stupid thing", "How can you do such a stupid thing"
**🟠 L1_hate (Implicit Hate)**: Mild hate expression
- **Implicit hate expression** for protected attribute groups
- For example: "Those people are all the same", "Prejudicial expression towards a specific group"
**πŸ”΄ L2_hate (Explicit Hate)**: Severe hate expression
- **Explicit hate expression** for protected attribute groups
**πŸ€– Mitigation Mode:**
- πŸ” **Detection Only**: Hate Speech Detection Only
- 🎯 **Guided**: Guided Mitigation
- πŸ”„ **Guided+Reflect**: After Guided Mitigation, Iterative Refinement
- πŸ€– **Unguided**: LLM generates text without any guidance
""")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Enter text",
lines=3
)
strategy = gr.Radio(
["Detection Only", "Guided", "Guided+Reflect", "Unguided"],
value="Detection Only",
label="Select Mitigation Mode",
container=True
)
analyze_btn = gr.Button("πŸ” Detect & Mitigate", variant="primary", size="lg")
with gr.Row():
with gr.Column():
result_output = gr.Markdown(
label="Mitigation Button",
value="Input text and click the above button."
)
with gr.Column():
mitigation_output = gr.Markdown(
label="Mitigation Suggestion",
value="Based on the analysis result, mitigation suggestions will be provided."
)
# Event handlers
analyze_btn.click(
fn=service.detect_hate_speech,
inputs=[input_text, strategy],
outputs=[result_output, mitigation_output]
)
# Allow analysis via Enter key
input_text.submit(
fn=service.detect_hate_speech,
inputs=[input_text, strategy],
outputs=[result_output, mitigation_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)