AI_Agent / app.py
Aman Jain
Added features
e85c8bb
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.document_transformers import BeautifulSoupTransformer
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain.indexes import VectorstoreIndexCreator
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains import RetrievalQA
model_id="mistralai/Mistral-7B-Instruct-v0.3"
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
"""
Returns a language model for HuggingFace inference.
Parameters:
- model_id (str): The ID of the HuggingFace model repository.
- max_new_tokens (int): The maximum number of new tokens to generate.
- temperature (float): The temperature for sampling from the model.
Returns:
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
"""
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token = os.getenv("HF_TOKEN")
)
return llm
st.set_page_config(page_title="Website Information Retirever Agent", page_icon="πŸ€—")
st.title("Website Information Retriever Agent")
st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input.It uses the model mistralai/Mistral-7B-Instruct-v0.3. You can enter the specific website url and the use the agent to gather information.*")
# Initialize session state for avatars
if "avatars" not in st.session_state:
st.session_state.avatars = {'user': None, 'assistant': None}
# Initialize session state for user text input
if 'user_text' not in st.session_state:
st.session_state.user_text = None
if "sitemap_url" not in st.session_state:
st.session_state.sitemap_url = None
# Initialize session state for model parameters
if "max_response_length" not in st.session_state:
st.session_state.max_response_length = 256
if "system_message" not in st.session_state:
st.session_state.system_message = "friendly AI conversing with a human user"
if "starter_message" not in st.session_state:
st.session_state.starter_message = "Hello, there! How can I help you today?"
# Sidebar for settings
with st.sidebar:
st.header("System Settings")
# AI Settings
st.session_state.system_message = st.text_area(
"System Message", value="You are a friendly AI conversing with a human user."
)
st.session_state.starter_message = st.text_area(
'First AI Message', value="Hello, there! How can I help you today?"
)
# Model Settings
st.session_state.max_response_length = st.number_input(
"Max Response Length", value=256
)
# Avatar Selection
st.markdown("*Select Avatars:*")
col1, col2 = st.columns(2)
with col1:
st.session_state.avatars['assistant'] = st.selectbox(
"AI Avatar", options=["πŸ€—", "πŸ’¬", "πŸ€–"], index=0
)
with col2:
st.session_state.avatars['user'] = st.selectbox(
"User Avatar", options=["πŸ‘€", "πŸ‘±β€β™‚οΈ", "πŸ‘¨πŸΎ", "πŸ‘©", "πŸ‘§πŸΎ"], index=0
)
# Reset Chat History
reset_history = st.button("Reset Chat History")
# Initialize or reset chat history
if "chat_history" not in st.session_state or reset_history:
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
if "sitemap_url" in st.session_state:
sitemap_url = st.text_input("URL to the website", value="")
if sitemap_url:
with st.spinner("Processing..."):
token = os.getenv("HF_TOKEN")
loader = WebBaseLoader([sitemap_url])
html = loader.load()
# Transform
# bs_transformer = BeautifulSoupTransformer()
# docs_transformed = bs_transformer.transform_documents(html,tags_to_extract=["span"])
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=10,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(html)
# # Create a vector store based on the crawled data
# index = VectorstoreIndexCreator().from_loaders([docs_processed])
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
db = FAISS.from_documents(docs_processed, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 4})
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
"""
Generates a response from the chatbot model.
Args:
system_message (str): The system message for the conversation.
chat_history (list): The list of previous chat messages.
user_text (str): The user's input text.
model_id (str, optional): The ID of the HuggingFace model to use.
eos_token_id (list, optional): The list of end-of-sentence token IDs.
max_new_tokens (int, optional): The maximum number of new tokens to generate.
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
Returns:
tuple: A tuple containing the generated response and the updated chat history.
"""
# Set up the model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
# Create the prompt template
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
# Make the chain and bind the prompt
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
qa = RetrievalQA.from_chain_type(llm=hf, chain_type="refine", retriever=retriever, return_source_documents=False)
# Generate the response
response = qa.run({"query": user_text})
# response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
# response = response.split("AI:")[-1]
# Update the chat history
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
# Chat interface
if sitemap_url:
chat_interface = st.container(border=True)
with chat_interface:
output_container = st.container()
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
# Display chat messages
with output_container:
# For every message in the history
for message in st.session_state.chat_history:
# Skip the system message
if message['role'] == 'system':
continue
# Display the chat message using the correct avatar
with st.chat_message(message['role'],
avatar=st.session_state['avatars'][message['role']]):
st.markdown(message['content'])
# When the user enter new text:
if st.session_state.user_text:
# Display the user's new message immediately
with st.chat_message("user",
avatar=st.session_state.avatars['user']):
st.markdown(st.session_state.user_text)
# Display a spinner status bar while waiting for the response
with st.chat_message("assistant",
avatar=st.session_state.avatars['assistant']):
with st.spinner("Thinking..."):
# Call the Inference API with the system_prompt, user text, and history
response, st.session_state.chat_history = get_response(
system_message=st.session_state.system_message,
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
max_new_tokens=st.session_state.max_response_length,
)
st.markdown(response)