File size: 5,208 Bytes
3aafe68 81e998f 27d2634 81e998f 330fc4f b5b8672 330fc4f 3358b89 330fc4f 81e998f 330fc4f b5b8672 27d2634 81e998f 330fc4f b5b8672 81e998f 330fc4f 27d2634 a941d96 27d2634 330fc4f b5b8672 330fc4f b5b8672 330fc4f 0373f3c 330fc4f 0373f3c 330fc4f 0373f3c 330fc4f 27d2634 0373f3c 330fc4f 81e998f 330fc4f 27d2634 330fc4f 27d2634 0373f3c 27d2634 81e998f 27d2634 81e998f 330fc4f 81e998f 330fc4f 27d2634 330fc4f 27d2634 330fc4f 27d2634 0373f3c 27d2634 0373f3c 27d2634 a941d96 0373f3c 27d2634 0373f3c 27d2634 330fc4f 0373f3c 330fc4f 51ad096 0373f3c 51ad096 330fc4f 0373f3c 330fc4f 27d2634 0373f3c 27d2634 0373f3c 27b07a6 0373f3c 330fc4f 27b07a6 0373f3c 330fc4f 0373f3c 330fc4f 27b07a6 0373f3c a941d96 330fc4f 0373f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import login
from threading import Thread
import PyPDF2
import pandas as pd
import torch
# Set page configuration
st.set_page_config(
page_title="WizNerd Insp",
page_icon="π",
layout="centered"
)
# Correct model name
MODEL_NAME = "amiguel/optimizedModelListing6.1"
# Title with rocket emojis
st.title("π WizNerd Insp π")
# Sidebar configuration
with st.sidebar:
st.header("Authentication π")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents π")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Process uploaded files
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"π Error processing file: {str(e)}")
return ""
# Load model and tokenizer with authentication
@st.cache_resource
def load_model(hf_token):
try:
if hf_token:
login(token=hf_token)
else:
st.error("π Authentication required!")
return None, None
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16,
token=hf_token
)
return model, tokenizer
except Exception as e:
st.error(f"π€ Model loading failed: {str(e)}")
return None, None
# Generate responses with streaming
def generate_response(prompt, file_context):
full_prompt = f"""Analyze this context:
{file_context}
Question: {prompt}
Answer:"""
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
inputs = tokenizer(
full_prompt,
return_tensors="pt",
max_length=4096,
truncation=True
).to(model.device)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
use_cache=True
)
Thread(target=model.generate, kwargs=generation_kwargs).start()
return streamer
# Display chat messages
for message in st.session_state.messages:
try:
avatar = "π€" if message["role"] == "user" else "π€"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Ask your inspection question..."):
if not hf_token:
st.error("π Authentication required!")
st.stop()
# Load model if not loaded
if "model" not in st.session_state:
st.session_state.model, st.session_state.tokenizer = load_model(hf_token)
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar="π€"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file
file_context = process_file(uploaded_file)
# Generate response
if model and tokenizer:
try:
with st.chat_message("assistant", avatar="π€"):
streamer = generate_response(prompt, file_context)
response_container = st.empty()
full_response = ""
for chunk in streamer:
# Remove <think> tags and clean text
cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
full_response += cleaned_chunk + " "
# Update display with typing cursor
response_container.markdown(full_response + "β", unsafe_allow_html=True)
# Display final response
response_container.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"β‘ Generation error: {str(e)}")
else:
st.error("π€ Model not loaded!") |