File size: 5,489 Bytes
3aafe68 81e998f 27d2634 81e998f 330fc4f b5b8672 330fc4f 0eb710b 3358b89 330fc4f 81e998f 330fc4f b5b8672 27d2634 81e998f 330fc4f b5b8672 81e998f 330fc4f 27d2634 a941d96 27d2634 330fc4f b5b8672 330fc4f b5b8672 ac19c17 330fc4f ac19c17 330fc4f ac19c17 330fc4f 27d2634 026c97a 330fc4f ac19c17 330fc4f 27d2634 0373f3c 27d2634 0373f3c 026c97a 27b07a6 026c97a 27b07a6 0373f3c 330fc4f 27b07a6 0373f3c 330fc4f 0eb710b 330fc4f 27b07a6 0eb710b 0373f3c 0eb710b 0373f3c a941d96 330fc4f 0373f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import login
from threading import Thread
import PyPDF2
import pandas as pd
import torch
import time
# Set page configuration
st.set_page_config(
page_title="WizNerd Insp",
page_icon="π",
layout="centered"
)
MODEL_NAME = "amiguel/optimizedModelListing6.1"
# Title with rocket emojis
st.title("π WizNerd Insp π")
# Sidebar configuration
with st.sidebar:
st.header("Authentication π")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents π")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"π Error processing file: {str(e)}")
return ""
# Model loading function
@st.cache_resource
def load_model(hf_token):
try:
if not hf_token:
st.error("π Authentication required! Please provide a Hugging Face token.")
return None
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16,
token=hf_token
)
return model, tokenizer
except Exception as e:
st.error(f"π€ Model loading failed: {str(e)}")
return None
# Generation function with KV caching
def generate_with_kv_cache(prompt, file_context, use_cache=True):
full_prompt = f"Analyze this context:\n{file_context}\n\nQuestion: {prompt}\nAnswer:"
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
generation_kwargs = {
**inputs,
"max_new_tokens": 1024,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
"do_sample": True,
"use_cache": use_cache,
"streamer": streamer
}
Thread(target=model.generate, kwargs=generation_kwargs).start()
return streamer
# Display chat messages
for message in st.session_state.messages:
try:
avatar = "π€" if message["role"] == "user" else "π€"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Ask your inspection question..."):
if not hf_token:
st.error("π Authentication required!")
st.stop()
# Load model if not already loaded
if "model" not in st.session_state:
model_data = load_model(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar="π€"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file
file_context = process_file(uploaded_file)
# Generate response with KV caching
if model and tokenizer:
try:
with st.chat_message("assistant", avatar="π€"):
start_time = time.time()
streamer = generate_with_kv_cache(prompt, file_context, use_cache=True)
response_container = st.empty()
full_response = ""
for chunk in streamer:
cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
full_response += cleaned_chunk + " "
response_container.markdown(full_response + "β", unsafe_allow_html=True)
# Display metrics
end_time = time.time()
st.caption(f"Generated in {end_time - start_time:.2f}s using KV caching")
response_container.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"β‘ Generation error: {str(e)}")
else:
st.error("π€ Model not loaded!") |